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ABSTRACT

The theory of gas mixtures is extended to cases where there
may be large differences in the flow velocities and/or temperatures
of the specles in the mixture; the species are not assumed to be
in local equilibrium. Transfer equétions for the thirteen moments
of each specles are constructed relative to the species' flow

velocity; the equations are closed by means of the Grad approximate

velocity-space solution for the species' distribution functions.

The partial collision integrals occurring in the btr'ansfer equations
are then expressed as functions of a dimensionless velocity,

> _ > >\ .,, 2 2 1/2

€ = (ut- us)/_ (as+ at) ~y the ratio of the difference in species'
flow velocities to a "mixed sound speed." The integrals are
evaluated for two Umiting cases: (i) |€| << 1 , arbitrary iso-
tropic collision cross sections ; (ii) |Z| >> 1 , arbitrary inverse
power interparticle force laws. A final set of exact calculations

is made for the "Maxwell molecule" force law.

Various statistical collision models are next presented as
possible substitutes for the Boltzmann binary collision operator,

with a view towards duplicating the partial collision integrals of
that operator.

Finally, transport quantities are calculated for: (a) weakly
lonized gas ; (b) blnary Maxwell molecule gas; (c) fully ionized gas.
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CHAPTER I

INTRODUCTION

The theory of gas mixtures has received widespread attention

over the past sixty years, beginning with the ploneer work of
1

Chapman™ and E_nskog2 whose serles solutions to the Boltzmann equation
converge sufficiently rapidly when the individual species of the

mixture are near complete equilibrium with a common flow veloclty

and temperature. The theory was extended over the ensuing years to

treat nonequilibrium situations where the specles are close to local
equi ldbrium individually, but not necessarily in equilibrium with
each other. Hence, closed séts of transfer equations for mass,
momentum, and energy, for each species, have been developed by

3-11

several workers for a mixture of gases having geparate Maxwellian

velocity distributions (with separate flow velocities and/or
’tenperatunes) . Exact calculations have been made for certain inverse
power interparticle force laws, .f = «/r* , namely s P>~ ("hard
spheres"), p =5 ("Maxwell molecules") ,p=3 ,p=7/3, and

P =2 (Coulomb force law); approximate results have been glven for

other force laws. 11

Because of the assumption of local Maxwellian
distribution functions, the calculations in references [3] - [11]
involve only the first five "velocity moments" of the species!
distribution functions: the species' number density » flow velocity,

gnd temperature. The situation where the specles are not in local
1 ‘




equilibrium has been invéstigated by several au’chorsl2-l6 using the
so called "Grad'! thirteen moment approximation” of the individual
species' velocity distribution functions; here, the distribution
functions depend upon the higher order velocity moments — the
traceless pressure tensors and heat flow vectors, in addition to
the first five moments. Thus, in this scheme the gas mixture is
described by closed sets of transfer equations for mass, momentum,
energy, traceless pressure, and heat flow, for each species. Small
differences in flow velocities are considered in references [12] -
[15], with arbitrary terrperaturel differences assumed in [12], [14],
[15]; references [12] - [14] involve general interparticle force
laws, while [15] deals with a fully ionized plasma. The calculations
of Everwett:L6 are for a fully ionized plasma (i.e. the Coulomb force
law) and allow for large differences in both the species flow

velocities and temperatures.

The primary goal of this dissertation is to extend the theory
of gas mixtures to situations involving general interparticle
force laws where the individual species are not in local equi-
librium, and where differences in species flow velocities and
temperatures are arbitrary; furthermore, the species are completely ‘
general in the sense that no assumption is made regarding particle
mass, nunber density, or electric charge. The Grad thirteen moment
approximation forms the basis for the calculations, which are all

relative to the species flow velocities and temperatures. It is




anticipated that the results will hold for a large body of non-
equilibrium problems not covered by the work in references [3] -
[11] (i.e. when the species distribution functions are non-
Maxwellian) or by references [1], [2], [12] - [15] (i.e. when there
exist large differences in the species flow velocities and/or
temperatures). Many of the results in reference [16] can be

recovered as a special case (i.e. the Coulonb force law) from the

present work.

Throughout this dissertation the particles in the gas mixture
are treated as 1deal point centers of force (except for the éase of
"hard spheres" which are treated as "billiard balls" with finite
spatial extensions); hence, the internal structures of particles
such as positive lons and neutral atoms are completely ignored.
Processes of ionization, recombination, dissociation, association,
and radiation by moving charged particles are not taken into
account; relativistic and quantum mechanical effects are also

ignored.

The usual Boltzmann equation, with the Boltzmann binary
collision operator used for the collision term, is assumed to be an
adequate equation of motion for the species velocity distribution
function (i.e. the "one-particle" distribution function). This of
course assumes that binary collisions are of predominant importance,
and does not take into account the influence of the positions of

the colliding partlcles; hence, restrictions are placed upon the




density of particles and upon the temperatures of the species.

In Chapter II a brief review of kinetic and transfer theory is
presented. The species' velocity distribution function is defined,
along with the macroscopic properties of the specles. The afore-
mentioned Boltzmann equation is introduced and "velocity moments"
are taken to construct species transfer equations for a general gas
mixture. These equations are "closed" and the calculation of the
accompanying partial collision integrals is made possible by the
introduction of the vGrad scheme for the approximation of the species
distribution functions. The validity of this approximation and the

ensuing evaluation of the collision integrals are then discussed.

The partial collision integrals are evaluated in Chapter III;
they are first expressed as functions of a dimensionless velocity,
-> > >, 2 2 l/ 2
€ = (ut— us)/{ (as+ at) s which 1s the ratio of the difference
In species' flow velocities to a "mixed sound speed," where

2

aS = 2KTs/ms with K denoting Boltzmann's constant and T m

s s
the temperature and mass, respectively, of species "s" . Before
proceding with the evaluation, a relation between the partial
momentum and random kinetic energy collision integrals is derived,
which is valid for all "diffusion Mach number," |2| ; this relation
affords physical insight into the transfer of random kinetic energy
between species. Next, the collision integrals are evaluated for
two limiting renges of |e|: (1) |e| << 1, arbitrary isotropic

collision cross sections; (11) |g| >> 1 , arbitrary inverse power




interparticle force laws. The two sets of results are conmpared
with respect to their dependence upon the "higher order moments" —-
the traceless pressure tensors and heat flow vectors; the directions
of the momentum collision integrals of cases (1) and (i1) are also
dlscussed. Next, the collision integrals are calculated exactly
for the "Maxwell molecule" interparticle force law for two cases:

(a) where all quantities are relative to the individual species'

flow velocities; (b) where all quantities are relative to the
mixture's flow velocity. From these calculations, conclusions are
drawn regarding the level of accuracy of calculations (1), (i1),

and those of references [12] - [14]. Finally, the dependence of the

colllision frequencies upon the interparticle force law and the
diffusion Mach number is exhibited.

In Chapter IV a temporary dlgression is made from the transfer
phenomena theme 1n order to present certain simplified kinetic
models for the collision term in the equation of motion of the
specles' velocity distribution function. Analyzed are the Gross-

18, the Sirovich modell9, a revised form of the Sirovich

Krook model
model, and a model based upon a Grad-like expansion of the collision
term. The ability of the models to imitate the properties of the

Boltzmann binary collision operator is discussed.

The subject of transport phencmena is returned to in Chapter

V, in which the traceless pressure tensors and heat flow vectors of



three systems are calculated for small diffusion Mach numbers. The
systems are: (I) a weakly lonized gas, with general inverse power
interparticle force laws and a magnetic fileld of arbitrary
magnitude; (II) a two-specles gas composed of Maxwell molecules,
with arbitrary mass and density ratios; (III) a fully ionized
gas, in which the total (i.e. system) traceless pressure tensor is

determined as a function of the system's flow velocity and current
density.
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CHAPTER II

DEVELOPMENT OF THE TRANSFER EQUATIONS AND THE
GRAD THIRTEEN-MOMENT APPROXIMATION
In this chapter the basic quantities pertinent to kinetic
theory are defined through the usual concept of a distribution
function. All of the macroscopic quantities corresponding to a
certain species of the mixture are defined relative to the

distribution function and flow velocity of that species.

The Boltzmann equation is then presented, and by taking
velocity moments of this equation the various macroscopic quantities

are related by the resulting transfer equations.

The next section presents an approximate velocity-space
solution for the species' distribution function based upon a
truncated expansion in three-dimensional Hermite polynomials,
commonly known as the "Grad thirteen moment approximation." In this
way the transfer equations become a closed set of coupled partial
differential equations, provided their collision integrals can be
calculated.

2.1 The Distribution Function and Macroscopic Quantities

The material of this section can be found in references [20] -

[22]. We begin by considering a general gas mixture composed of an



*
arbitrary number of distinct species. The velocity distribution

function, or simply the distribution function, for species "s" is

defined such that the quantity

F%(i, v, t)dx av (2.1)

gives the probable number of particles of species "s" located in
the volume element dX about X% s with velocities in the range av
about V , at the time t . The differential lengths and velocities
in (2.1) must be small compared with macroscopic distances and
velocity intervals over which there are significant changes in the
macroscopic properties of the species; at the same time, however,
they must be sufficiently large so that there are a large number of
particles in dx dv » thus allowing Fs(i, 3, t) to be a continuous
function of its variables. We note from the definition that the

species distribution function is non-negative, and that
Fg(i, V,t) »0 as |[¥] > . (2.2)

It follows as a consequence of the definition (2.1) that the number

density for species "s" (the number of "s" particles per unit

volume) is given by

NS(SE, t) = s Fs(i, v, t)av (2.3)

*
A "species" 1s in general defined by its electric charge and
mass.



*
where the integration is performed over the entire velocity space.

The average over all velocity space, or simply the velocity average,

of any quantity e(X, V, t) 1is defined as

<o(X, ¥, t) > Nl IR, ¥, 60X, Y, ) (2.4)
S s

L]

where the subseript "s" on the average symbol "< >" indicates
that the velocity averaging is to be done with respect to the
specles "s" distribution function. We note from (2.3) and (2.4)

that if ¢ 1s independent of the velocity, then

<olX, t) > = o(X, t) . (2.4a)
S

The average velocity of species "s" particles or the flow velocity

of species "s" is

G Et) = < V> = 22 s PV b . (2.5)
S s

The peculiar or random velocity of species "s" particles relative

to the species "s" flow velocity is

(¢1%
Py
>4
-

<
"]
ot
p—

11

v - ES(E,t) (2.6)

*Unless otherwise stated, all integrals without explicit limits
are to be taken over the entire domain of the variable of
integration, e.g. f Fs(i*,_‘;,.t)cﬁ = I/f FS(2,2?,1:)dvldvgdv3 .

-0
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from which 1t immediately follows that

< csz>s =0 . (2.7)

The temperature of species "s" 1is defined in terms of the

velocity average of the randam kinetic energy of species "g"

3 2y - o 1
§-K Ts(x,t) = < Fme

2
s’s

> (2.8)
S
where K 1is Boltzmann's constant, and m 1s the mass of a species

"s" particle.

The J-k element of the species "s" pressure tensor, or

simply the species "s" pressure tensor, is defined as

> ~ *
psjk(x’t) z < pscsjcsk ; (2.9)

where J,k = 1,2,3, and Ps is the mass density of species "s"

ps(szgt)

msNS(I,t) . ' (2.10)

The hydrostatic, mean, or scalar pressure of species "s" is given

by

-> 21 ->
Ps(X,t) = 3 pgyq(Xst) (2.11)

*
With any quantity such as psjk » the first subscript refers

to the species; any other subscripts refer to the spatial direction.
The one exception to this occurs in Section 5.4, where quantities
appear without species subscripts. .
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where, unless otherwise stated, a repeated direction index is to be

sumed, e.g. Pgi1 = Pgyit Byoot Pg33 - From (2.8), (2.9), and
(2.11) we obtain

pg = NK T (2.12)

which is a form of the perfect gas law. The non-hydrostatic or

traceless pressure tensor of specles "s" is defined as

"

- ) 1 2 _
stk(x’t) < ps(csjcsk_ §'6chs) s Pgyx ajkps (2.13)

where ij is the Kronecker delta

1, j=k

ij z (2.14)
O , otherwise

The heat flow tensor of species "s" is defined as

sigk®oP) = pglgiCsC > (2.15)

while the heat flow vector of species "s" is given by

> 2+

- 1 > _ .1
Ag(X,8) = 5 dgyq8y = <5 PsCs% = s (2.16)

where 3 _ 1is the unit vector in the k¥ - direction, k = 1,2,3.

Finally, we define a fourth-order tensor
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(i,t) = <

pshijk ) pscshcsicsjcsk ; ' (2.17)

The preceding velocity average quantities are often referred to

as "velocity moments," or simply "moments", of the species distribu-
tion function. It is important to observe that these maments have
>
]
herein been defined relative to the species' flow velocity, Ug

(see Eq. (2.6)), as oppased to analogous definitions relative to the

mixture flow velocity23, a s where

>

pu(X,t) = 2 o U, , and (2.18)
sSS

p(X,8) = I p (2.19)

is the mass density of the mixture.

2.2 The Boltzmann Equation and Equations of Transfer

The equation of motion for the species "s" distribution

function is given by2u

3F oF b oF SF §F
S S si s S s
— 4+ v + = ( ) = I(—>) (2.20)
3t 1 axi ms v 5t collisions r st sr
collisions

*
where fs(f,G,t) 1s the external force acting on a specles "s"

*
The term "external force" refers to all forces other than
those involved in collisions.
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particle which is located at x with velocity V at the time t

2

and (GFs/at)Sr gives the average time rate of change
collisions

of the species "s" distribution function due to collisions of
species "s" particles with species "r" particles. The sumation
in (2.20) 1s over all the species in the mixture, including

Mt o ngn

s and there is an analogous equation for each species.

Equation (2.20) becomes the Boltzmann equation if the right-hand
25

side is gilven by

= o > ‘
Z(&Fs/dt)sr i [fff(FsFrl FsFrl)gbdbdedvl] (2.21)
collisions

where g is the relative velocity between a particle of species

"s" and its collision partner of species "r"

- = # '
g : V- v, (2.22)

ik

b 1is the impact parameter of the binary collision, ¢ is an angle

specifying the collision plane (i.e. the orbit of the colliding

n

r" particle relative to the "s" particle), and the primes refer

to post collision gquantities, e.g. Ffl = Fr(i’;i’t) . The
integrations in (2.21) are taken over all possible impact para-

meters, collision plane angles, and velocities. The term in

*
The subscript "1" is used simply to distinguish the
velocities of the colliding partners.
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brackets, "[ 1" , in (2.21) is known as the Boltzmann binary

collision operator for collisions between particles of species "g"

o1t
e

and 'r

If the equation of motion (2.20) could be solved for the
species' distribution function, Fs(§,3,t) » then of course all of
the previously defined velocity moments could, in principle, be
directly calculated. However, when the Boltzmann binary collision
operator, (2.21), is included, the set of equations for the species'
distribution functions becomes a set of nonlinear integro-partial
differential equations which is in general untractable. One method
of circumventing the difficulty is to construct a set of transfer
equations for the moments and employ some sort of truncation scheme

to close the set.

If we multiply equation (2.20) by an arbitrary quantity
Q(X,v,t)dV and integrate over all velocity space, we obtain a
generalized transfer equation for the quantity Q(f,?,t) .

Performing the integration term by term in the usual way26, we

find

3Q .

9 3Q 3 _ . .
= (N_<Q2)= N < =% > + — (N < Qu,>)= N_ < v, —= > -
at Vs e s ot s axi S i S s i axi S
N, sF
s Q. _ 8 >
- < fSi Pk I Q (——St )coll.dv = 8Q (2.23)
S is
where §Q = I f//f (Q'- QFF, ebdodedvdy, (2.24)

r
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when the Boltzmann binary collision operator (2.21) is used. The

right-hand side of (2.23) is referred to as the collision integral

for the quantity Q(%,?,t) . A trivial consequence of (2.24) is

" .

that for any velocity independent quantities, Q(f,t) s ¢(§,t) s
N

8Q(x,t) = O , and (2.25a)
6[¢(x )UK, V,8)] = o(F t)GQ(x,v,t) (2.25b)

In what follows we shall be dealing with Q's which are

explicit functions of the random velocity
Q= h(é‘s) R (2.26)

but it must be kept in mind that ¢_=v - U_(X,t) , so that
S S

Q = h(S)) = n(v - &(%,1)) = HE,T,t) . (2.27)
Then taking Q(X,V,t) to be m L2
2 s ° MsCsk 2 3 MsCg o
12 |
m (csJ Sk §- ch 2) > and Fmecc, we obtain, respectively,

the mass conservation equation, the momentum equation, the random

kinetlc energy equation (or simply the "energy" equation), the

fraceless pressure equation, and the heat flow equation for

species '"s"

DgNg >
mass conservation: 5o * Ng v.u, =0 ‘(2‘28a)
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Du ap aP
. s sk sik
momentum: P T + _axk +— axi

~ N [e (§+ux§)+m§]

= s(mee ) (2.28b)
energy. %D_lgg's'+g'ps V'us"'Psi.j azs tV.qg = SFmey)
(2.28¢)
traceless pressure: --S—§J— + Py sik ¥ s (Bi 13h skh)
Ssict Usjytt, 3 2
+2(Psi,j 9%, 2ps(axk + oX, (qsijk -3 sjkqsi)

= §(m cs,j sk - % GJk 6(% msci) (2.284a)

D <d ou e
. _s7sk sk T8 > -
heat flow: -5+ Qg 7 u tay %, - i (q_x B)
dpg P p P du
..(__. .._S_id.)(.b:. ...§.5 +_§Jl(.)+q _._S.J..}.
axJ axi 2 o s Jk° o s sijk axi

l - 1.,
3 ax Psikyj 5(% mscs sk~ ;‘;-(g' ps‘s.jk+PsJk)6(m cSJ)

(2.28e)

In (2.28a~e) we have introduced the "hydrodynamic" differential

operator
D
-D%a(—% G V), (2.29)
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the alterating tensor

+1, if 1,J,h 1is an even permutation of 1,2,3
ei,jh z -1, if i,j,h 1s an odd permutation of 1,2,3 (2.30)
O , otherwise

the symmetrized second order tensor
aot =L +ny , (2.31a)
a7 Bt b)) s '

and the traceless symmetrized second order tensor

ytto 1

()72 5 (At By) - %— Sbyy - (2.31b)

Jk

In obtaining (2.28a-e) we have employed the definitions for the
moments given in Section 2.1, along with the fact that < '53> =0.

8
The right-hand side of the mass conservation equation, (2.28a), is

zero since we are considering only those collisions in which the
mass of a given particle is unchanged, so that Q'- Q = me~ mg = 0.
Finally, we have assumed the extermial force i‘s to be given by the

Lorentz force plus a gravitational force
-»> > -> *
fo=e(E+Vx B)+ ms§ (2.32)

where e, 1s the electric charge of an "s" species particle, E

<>
is the external electric field intensity, B i1s the external

Ratlionalized MKS units are used throughout this work.
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->
magnetic flux density, and G 1s the external gravitational

acceleration.

Inspection of the set of transfer equations (2.28a~e) shows
that there are, in general, a total of thirteen independent scalar
equations with thirteen unknown scalars Ns ,'ﬁs, "I‘S (or ps) s
PS ik ° as » plus the second and third order tensors psikJ g
qsi,jk » for each species (the traceless pressure tensor Ps ik
constitutes only five independent unknown scalars, since it 1is
symmetric, Ps Ik = PskJ » and traceless, Psii = 0 ). Hence, as it
stands, the set of transfer equations is not closed; however, we
shall see in the next sectlon that, with sultable approximate
velocity-space solutions for the species' distribution functions,
the higher order tensors can be expressed in terms of the "first"
thirteen moments, thus closing the set of transfer equations. Of
course, without same such knowledge of the distribution functions,
we could never hope to obtain a closed set of transfer equations
since, as can be seen from (2.28a-e), each succeeding equation is
coupled to the next higher mament equation. The reason for this
coupling can easily be seen from the equation of motion, (2.20);
this equation contains the term viaF s/ 9%, » S0 that the transfer
equation for a quantity proportional to vﬂ will involve a "highef

velocity moment" proportional to < v?:l > .
8
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2.3 The Grad Velocity Space Approximation to the
Distribution Functions

In order to express the higher order tensors psikj 30 qsiJk ’
which appear in the traceless pressure and heat flow equations in
terms of the first thirteen moments and therby close the set of
transfer equations, we employ the Grad schceme.17 In this scheme
the distribution functions are expressed in three-dimensional
Hermite polynomials, and the expansion is terminated in such a way
that the distribution functions depend upon the first thirteen
moments (N, ﬁs, T, or D , Pegk * ES) » but not upon any higher
order moments ("higher" both in the sense of higher order tensors
and higher degree in the random velocity). Such a termination is
Justified to the extent that these thirteen moments are the ones of
usual interest in kinetic theory and plasma physics, plus the
reasonable expectation that higher order moments should be

relatively unimportant over a wide range of situations.

Following Grad, we expand the specles' distribution functions
about a locally Maxwelllan distribution in terms of three
dimensional Hermite polynomials

- =0~ (n),(n) .z |
F Fg niobSi Hsi (Bs) (2.33)
2,2 2
N -c5/8 N -8-/2
wh (o) _ s s 78 S s
S S




1s the local Maxwellian distribution function for species "s" ,

'§s = V2 c/a, , and | (2.35)
1/2 o .
ag = (2K Ts/ms) : (2.36)

1s the "sound" or "thermal" speed of specles "s" . In the

expansion (2.33), Hé;_l)(_gs) is an nt—h~ order tensor with n indices,
1= (15,0..,1) , and 1s also an n2 Gegree polynamial in the
dimensionless velocity ?s 3 the coefficient bg_l) is an nﬂl order
tensor and the usual convention for sumnation over a repeated

direction index is to be applied to the index set 1 = (11,...,1n) .

Befor'e proceding we should note from (2. 33) that, because each
componen+ polynanial of H(n)is orthogonal to each ccmponent poly-
nomial of H(m)with respect to the "weighting ﬁmction" F(°) unless
nen and (il,s.e,in) is a permuta’cion of (Jl,...,J ) the calcula-
tion of the coefficients b(n) is unaff‘ected by the cholce of’ the

si;
27
truncation point.
The first four tensors Hin) are27

(O -y (2.372)
1 _

Hsi} = Bgy (2.37p)
(2)

Hotg = Ba1Bag™ S1j (2.37¢)
H3) =5 .8 (8 5ot By 6, .) (2.374)
sijk “si sj sk si Jk sJ ik “skij’ °
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Substituting (2.37a-d) into (2.33) and contracting the indices of

(3) 4(3) .
bsijk Hsijk s0 that the highest order tensor introduced into the

expansion will be of second order, thus insuring the closing of the

set of transfer equations (2.28a-e), we obtain

= w(0)(0),(0), . (1), (1), . (2) ,(2¥;..(3) ,(3)
Fy = Fy [bs Hs oy ey bsij Hsij+ bsijj Hsikk]

B .+ b(3) B .32 ]

_ w(0) e (0)', (1) (2)
=Fg Ebs 05yt Byt b B sj "sijj"sis

si “sij Tsi

or, in terms of the random velocity, I3

2] . (2.38)

= (o) B
Fs Fs [bs+ A1t sj+ Csicsi S

.c_.+B e .c
si“si "sij7si

The evaluation of the coefficients in (2.38) is accomplished

by recalling the following "constraints"

> - *
Ny =/ Fdv = SF_dC, (2.39a)
_ > - _]___ > >
0 =« CS>S = N f Fscsdcs (2.39b)
S
3gq scln?s-L,plo2a
5 K Ts = < Fmeg 2;_ Ns i) FS 5 M Cy dcS (2.39¢)

* X

Note that fh(X,V,t)dv = fh(i,?,t)dgs » since dv,= d(csi+u812=
dcSi inasmuch as Ugy= usi(K,t) is held constant during the
integration.
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P, =<p (c,o.~%6,c%)> = B (e e - %6, c2)dd
sjk ~ s syosk” 3 ks’ G s s?s'®s3%k” T °jk s
(2.39d)
and
> _ 1 2> .1 1 2> >
A5 = <7 PsCCs % * ﬁ;'st 2 PgCsCsiCs (2.39e)
Substituting (2.3“:), (2.38) into (2.39a-e) we obtain
bS =] (2.402)
A, = <lUq . /p.a" (2.40b)
si Asq Ps?s *
B.,=P../pa (2.400)
sij = “sij/Ps% y
A
. 2 'si
Csi = - -5- — s (2.4038)
a
S
so that (2.38) becomes
(o) Psij csi?§17 uqsi 2 ci
F = Fg [1+ > 5 - — (1 "5"'5)%11' (2.41)
S as psas a

From (2.34), (2.41) we see that, to this lewel of approximation,
the velocity-space solution for F, depends upon the "first"

-> >
thirteen moments Ns’ ug (through cs) » Ty or Pg > stk » and
aé 3 hence, the solution (2.41) is often referred to as "Grad's

thirteen moment approximation.”

The higher order terms psikjj R qsiJk which occur in the
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traceless pressure and heat flow equations, (2.28d, e), can now be
related to the first thirteen moments; substituting (2.41) into the
definitions for these terms, we obtain

p
p = 2 = -8
sikjj = < pscscsicsk >S Py (7Psik+ 5psdik) (2.42)
and q

_ 2
sigk = Ps%s1%3%k 75 = 5l%%01y* GeySiit Ag18y) - (2.43)

Substituting (2.42), (2.43) into (2.28d, e) we obtain the following

*
closed set »of transfer equations:

DN .
conservation of mass: Bts +N_v.u_ =0 (2.443)
] s ]
D_u p aP_, '
. S sk ) silk e 2
momentum: Ps — ot %, + axi - NS[eS(E + gsxﬁ)-l-msG]k
= G(mscsk) (2.44b)
D_p u
rey: 5 =S+ 2 O —81 402 = sl o2
energy: 5 -5 * 5D V ut Psij %, tv.q = 6(2 mscs) (2.44c)
D.P_. e
. _8 8jk 2o S +
fraceless pressure: ot Ps,jk Veu - 2 m——s (Bie 1 JhPskh) +

u u 3q
sk, tt s Tt 4 sjtt
+ 2(Psij axi> * zps( axk) * §( axk)

- 2 1 2
= G(mscsjcsk)_ 3 63k6(§' mscs) (2.443)

*Whenever we refer to a "closed" set of transfer equations,
such as (2.44a-e), it is understood that we are actually referring
to the system's closed set of 13r equations, where r is the number
of species; a similar understanding holds for 2 phrase such as
"thirteen moments" Ng» ug, T or Pg > stk > dg
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D g 3u U
. sk T . sk 2 _siy _
heat flow: 5 * T qsi(éik veut %, + 7 3$§)
_i_s_ (Ei xﬁ) Psik (5..?3__ lK’I‘s aNs ) aPsiJ) N
m, s k Ps 2 axi 2 mg. axi axJ

= 83 myele )~ 5’1; 3 Pgbyyt Pop)Slme st) + (24be)
If we had not terminated the expansion (2.33) with the
contraction of the third order Hermite tensor but rather had
retained the full tensor, the distribution function F, would have
contained the third order tensor qsijk and a transfer equation
for this tensor would have been required in order to obtain a
closed set of transfer equations. The point of truncation is to
a large extent arbitrary, it depending upon the degree of
complexity one 1s willing to introduce into the analysis and upon
how greatly the species distribution functions deviate from their
local equilibrium forms, that is, from Fé°).*

#
A system is in local equilibrium when (6F /8t)

=0
coll. ’
for all "s" ; a species "s" is in local equilibrium when
(6Fs76t)ss =0 . It can be shown that Féo) the Maxwellian

coll.
distribution, is the only local equilibrium distribution

function,22’28 2

where S

can depend upon (§, t) .
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2.4 Purther Approximations to the Distribution Functions

We note that the distribution function given by (2.U41) can be

written in the form

_ m(o)
FS = Fs 1+ ¢s) (2.45)
where ¢_ = PSi.j cSicsj uqSi (1 - 02)0 (2 46)
s P ag o, aﬂ 5 i si*

In the subsequent calculation of the collision integrals we shall

encounter a double integration over the quantity

= plo) (0) ,
F Fldcsdct = s (1+ ot ¢t1+¢ ‘”tfdc dc (2.47)
c2 02
(0)(0) S t
Because of the exponential factor in F Ftl N exp[-(—§-+ -59] s
a a
8

the major contribution to the integration (2.47) will stem from

the region ¢, {a_ , ¢, {a_ . For this region we assume that
Srgs t,\lt

4] s [¢,| are sufficiently small to allow the discarding of the
term 6,6, 1in (2.47); that is

<<1 for c_. X a c a, . 2.u8
|¢Sl’l¢tl << s“'\, s ? tl"t t ( )

For the condition (2.48) to be satisfied in general, each of the
terms in (2.46) must be small in the same sense as (2.48); taking

cs to be of the order of a; 5 Wwe find that these terms will be
small provided that
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!Psijl << Py (2.49)

. 1/2
and |qg| << agpg = py(2p /o) : (2.50)

Simple calculations show that, when the specles "s" is in local

equilibrium,

P_.

- = plo)
sij = O , q.=0 , for Fs =F . ~(2.51)

Sl S

Hence, (2.49), (2.50) simply reflect the fact that FS is "close"

to its local equilbrium form, Féo) .

Finally, we note that although the condition |¢S| << 1 cannot
be made to hold for indefinitely increasing values of Cg » NO
matter how small the coefficients in (2.46) are, the specles '"s"
distribution function FS is still quite close to its local
equilibrium form, Féo) s due to the presence of the factor

exp(-cg/ag) in FS » equation (2.45) .
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CHAPTER ITI

EVALUATION OF THE COLLISION INTEGRALS

In this chapter we shall calculate the collision integrals
encountered in the construction of the transfer equations of Section
2.3. Insofar as the actual details are concerned, we shall only

present the calculation of the momentum collision integral (i.e.

the right hand side of the momentum equation, (2.44b)), since all
the computations are extremely involved and tedious. The results
for the other three collision integrals (energy, traceless pressure,
and heat flow) are also presented here, but the detailed calcula-.
tions are relegated to the appendices. For the most part the four
evaluations follow parallel analyses and the choice of the momentum
collision integral for presentation is merely one of convenience

(it being the simplest to calculate).

After several intermediate steps (both in the text and in the
appendices) we shall arrive at a point where the collision integrals
are presented as functions of a dimensionless velocity, IS » Whose

magnitude is sometimes referred to as the "diffusion Mach num.ber."lo

At this point a relation between the momentum and energy collision
integrals will be derived which is "exact" in the sense that it
holds for all diffusion Mach number, e .

Next, the collision integrals will be evaluated for two
27
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limiting cases: (1) e << 1 ,and (ii) e >> 1. In case (i) the
calculations are for interparticle force laws which are arbitrary

to the extent that the éollision cross sections are isotropie, i.e.
dependence on the relative velocity is limited to dependence on its

magnitude. In case (1i) the interparticle force laws are of the

inverse power type.

The four collislon integrals are next evaluated exactly for a
particular inverse power interparticle force law, namely the
"Maxwell molecule" force law; the results are "exact" within the

limitations of the Boltzmann binary collision model.

In the last section the dependence of the collision frequenciles
upon the interparticle force law and the diffusion Mach number is
exhibited.

3.1 The Partial Collision Integrals as Functions of the
Diffusion Mach Number

To make the notation somewhat simpler we shall deal with
"partial" collision integrals; that is, for any quantity Q(%,7,t) ,

the total collision integral, or simply the collision integral, for

species "s" will be given by the sum of the partial collision
integrals

§Q = £ (8Q) (3.1)
t st

where »(6Q)st is the contribution to 6Q due to collisions of the
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"s" particles with the "t" particles, and the sumation is over

all species, including "t" = "s" ,

Using the Boltzmann binary collision operator, we have from
(2.24)

(6Q)gq = //17(Q'- QFF, jgbdbdedvdv, (3.2)

where it will be recalled that primed quantities refer to post

. > >
collision values, and where Ftl = Ft(x,vl,t) . qu the partial

momentum collision integral we have

Q= me (3.3)
so that (3.2) becomes

> > *
[6'(ms°sk)3st =mg JISf(el, - ey )F.F,  gbdbdedVdv, . (3.1)

We now introduce the following quantities:

m = ms+ m _ (3.5a)

reduced mass b= msmt/mo (3.5b)
> L > ->

center of mass velocity Cy = (msv + mtvl)/mo (3.50)

relative velocity between colliding partners é =z —\;1- v o, {3.5d)

*
Note that the momentum collision integral and the random
momentum collision integral are equal since 6(m_c

S sk) = ‘Stmsvk) =
-G(msusk) = d(msvk) by reason of (2.25a).
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Solving (3.5¢,d) for v » recognizing that 38 = 30 (the center of
mass veloclty 1is unchanged in a collision, due to the conservation
of momentum), and further that ﬁé = ﬁs (any quantity o(X,t) is

unaffected by a collision), we obtain
cék— Csk (vl'{- uék) - (Vk- U‘sk) = (mt/mo)(gk' g}'{) ’ (3.6)
so that (3.4) becomes

Lolmoeg ) = w /117 (g~ 8))FF,  gbdbdedVd, . (3.7

In order to perform the integration over de (recall that e

specifies the "collision plane," and is not to be confused with the

"diffusion Mach number," |¢| , which will appear later in this

section), we must express (gk— gi) in terms of ¢ ; this is
readily accomplished by means of a coordinate transformation.
First, we suppose that g and é' refer to a rectangular co-
ordinate system with unit vectors §i s 1 =1,2,3 ; next we
construct a local rectangular coordinate system with unit vectors

3&, 3&, Ez » such that § lles along a
s

, (see Figure 1).°

pa)
N g
& X

x
\

|
|
]
1
|
€ AN |
N

FIG. 1. LOCAL, COORDINATE SYSTEM.
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From Figure 1 we have

g = ggz , 8 = s[sinx(gxcose + Eysine)+ 5zcosx]

where x 1s the "scattering angle,” and where we have noted that

g = g" (see reference [29]). The transformation fram (1,2,3) to

(8sXxse) coordinates then gives us

Ry

g = '3 = ay (3.82)
&

E'-é’k = g[sinx(quC:OSe + ayksine)+ azkcosx] s (3.8b)

where k = 1,2,3, and axk is the direction cosine between the x

> >

and k - axes, a,'a , etc. Substituting (3.8a,b) into (3.7) and

performing the integration over de then gilves us

> >
[G(mscsk)gt = u fsJ 2n(1-cosx)bdbF F &g, dVdv, . (3.9)

At this point we introduce a general collision cross section30

S(z) z2n J (l-coszx)bdb >0, 2=1,2,00. , (3.10)

where the 1limits on ‘b (the impact parameter) are usually taken

to be (0, ») . Since the scattering angle x depends upon the
magnitude of the relative velocity,.g (for central farce laws),
upon the form of the force law, and updh the impact parameter, b ,
we see from (3.10) that the cross'sectionfs(z> depends, for a glven
central force ldw, tpon the magnitude of the relative velocity, &

tie. s =58y | We shall make use of this "isotropy" of
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#
the cross sections in the calculations of Section 3.3. Substitu-

tion of (3.10) into (3.9) gives us

Eﬁ(mscsk)it = u 11 B F a8 s\ (@)dval, (3.11)
This i1s a well-known result and may be found in various sources
(see references [22], [31], for example).

To proceed with the integrations we now make a succession

of coordinate transformations. First, from (3.5¢,d) we have

de_,dg; = IJIdVidvli (no sumation here)

9Co1 984 Mg o
5, 33 m_
where J = det = det =1,
3oy 98y M o
L"Vli Vg Mo B

*These calculations also hold for the larger class of cross
sections in which S(l) is an even and symmetric function of the
three varisbles (g1, €5, 83) » 1-e. S'')(g), &), 83)
S(g)(igi, igj’ igk) where 1, J, k 1s any permutation of 1, 2,
3 ; however, we shall write S(z) = S(l)(g) for brevity, keeping
in mind that the results of Section 3.3 also hold for

L L
S( )(gl’ 82.’ g3) = S( )(f_gi’ ing igk) .
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so that dec oidgi = dvidvli (no summation here), and thus .

d€ﬂ§=<ﬁ&a . (3.12)

Substitution of (3.12) into (3.11) gives us

li«S(mScsk)]t =y ff FsFtlgng(l)(g)dgodé : (3.13)
S

Substituting the approximate velocity-space solutions for Fs, Ftl R

(2.45), into (3.13) we obtain

2 2
c C
G5
[6( ) ___“NsNt Iy as at (146 + ) S(l)( )d+ >
(meeg )l E;;f;’;? /e ot )88, g)dc dg ,
st ’

(3.14)

where we have neglected the term involving ¢ s¢tl in accordance
with the discussion of Section 2.4. A second transformation of
integration variables is now made; first, solving (3.5¢,d) for

-> >
vV, V., , We obtain

“c*s =V - Es = ¢ - (m/m)g - ﬁs (3.15a)
and
gt = :‘;l- -ﬁt = 3o+ (ms/mo)é) - "ub . (3.15b)

Introducing the velocity
A
?50 z 'c’oé{EE(mt/mo)ag - (ms/mo)agj + ("u’sai + ﬁtag)}agz s (3.16)

we obtain from (3.15a,b)
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> '-\; 2 - >
cg = Cym (as/ao)(y -€) (3.17a)
and
> ,_\; 2 > >
¢, = c.t (at/ao)(y - €) (3.17p)
where § = E/ao (3.18&)

€ = (G- 0.)/a (3.18b)
and az (ag + aﬁ)l/2 . (3.18e)
From (3.16), (3.18a) we have
d—> > 3 dg >
cdg=ajde dy |, (3.19)

since 'EO and g in (3.16) are to be treated as independent
variables (see definitions (3.5c,d)). Substitution of (3.17a,b),
(3.18a), (3.19) into (3.14) gives us

2
uN N, a v
t 8 3 > (1)
[stme )] = == X & &yy, sy
s sk St Tr3 a3 o) k (o]
M
'32
{2 +(F-9)°] )
au Psij csicsj qui 2 Ss
. e {1+ - i (1- 7 Se_+
P a2 o.a 5 a2 si
_ s s%s s
Prig %1%3 g1 . 2 s .
+ - u (l— T —)c } F) (3'20)
Py a2 a > 27t
t Ptag t
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2 P 1/2
where au = asat/alO = asat/(as + a,.)

t s (3.21)

and where we have written out the term (1+¢ s+°tl) in full (see
4"
(2.46)). The integration over dEO in (3.20) can be performed

directly; we have the following integrals (see Appendix A for the
major steps involved):

NP
(1) S & e 9 M= 32 aS
o o
- W -c-/a
S > o Tu 322 3 -1
(i1) / dco cyy © = -1~ “ag a; a, (yi—ei)

- ) 2
Y % 32 3.1 .2 4 -2

(1i1) s de C51Cgy © = au[ 5 auai,j"' aa_ (yi'ei)(yj'ej):'
3 2 -Eg/a2 3/2,3,2.=1¢5 2, U =2,» » 2

(iv) fdey cce e M= g aaca, EE a taa, (y=¢) ].(yi-ei).

For the same integrals (1) - (iv) with "™t" instead of "s" we
may simply replace (-ag) in the results by (+a€) in view of
the equations for ¢ , ¢ , (3.17a,b). Using (1) - (iv) to
perform the d%o integration in (3.20) we obtain, after
considerable manipulation,
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(1 _3-2)°

Eé(mscsk)l g ! & y Yy S )(a y)e =€) 1+
where C, = uNSNﬁag n'3/2 (3.22a)

E,, = 2a~2( EDS—i-1+ -Pt—il) (3.22b)

ij - o Py P *

q Q.

and R, = has3( St th (3.22¢)

Ps Py

Expression (3.22) gives the partial momentum collision integral

as a function of the dinensionless velocity IS » Whose magnitude,

e 5 we shall refer to as the diffusion Mach number, following

Mbrse'slo nomenclature. As can be seen from (3.18b,c), ¢ is the
ratio of the difference in the species' flow velocities, (Gf— )
1/2

to the "mixed sound speed," a, = ( )

The results for the partial random kinetic energy collision
integral (which we shall simply call the partial energy collision
integral henceforth), the partial pressure collision integral, and

the partial heat flow collision integral are taken from Appendices
Band C ,

Energy: EG(2 m_c )]t =aly /& nyS( )(a Je” -(F-)? {Fyy(yy=ey) +
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2,2 >29 U
+ S,jl:l - '5‘(Y'€) ]' g Si(yi‘ei)(yJ‘EJ) +

+ayy+ ey 148 (y;-e) (7,m6 )Ry (vy-e) (- EF-DD]} (3.23)

y . N - > =% (D) t
Pressure: Ea(mscsjcsk)gt =aly /¥ ye € 128 (aoy)y'j

AP (vymet S L1- BF-D- 25, (7,me)) (yme) +
+Hay e, IIHE (35-; ) (v e 4Ry (74-¢,) (1~ BF-DH1T +

+ ;in; 8(2)(3037)(3’25:“(‘ 3yjyk){1+Eip(yi"€i) (yp-ep) +

+ Ry (y3-e,)[1- .%(?-E)QJ 1 (3.24)

Heat Flow: Ed(%—m © e )]

> > 2
s’s sk’ %ao Cst / @ y 3(1)(aoy)e-(y-e) { ...
S

-2
[2y, (a3 be,) (ay,ctbe, )+ 3, ((aF+02) 2+ :—Ey%l-cl +
e}

> > 2

+ Eij (yi-ei) (YJ_EJ)"' Ri(yi-ei)(l- %(y"e) )] +

2 as 5
+ 2b(ye,) +(ay® bx e )6, 1+ L[ 2y + y.G.. +
V3% 0581 2 2N Y

+ %Eij (yi‘-gixyj_sj )yk+ %Ri(yi-ei)yk(l- % (5“2)2) +
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1 Hi(ZGikyJ (yd'sd)+ WV~ TV eq- 2yiek)J} +

Nll—-‘
P
O n

+> > 2
Cat/ & y(y° Syp 3ykyp)s(2)(aoy)e'(y*€)'{Fip(yi-ei) +
2, 29 A4 .
+ 81 - §y=e) )= 5 8 (y-eplyme) +

Hay e )1+ By (3¢, (yy=e )+ By (yymey ) (1= 2G50,

(3.25)
2
where a = ( (T T ) (3.26a)
M3 0 ae
b 5 a,2/a2 (atb = m_/m.) (3.26b)
“g'“o0 - My /M, *

B, = (s2/2)(LEAL fsuy, (F,, = 0) (3.26¢)
1A T Yt neoe
S, = (a2/a3)( st , 31, (3.26d)

i P Py )
Gy, = (32/2)(£§-P + SE'P ) (Gy, = 0) (3.26e)
13 '8 2 “siyT T2 feay/ 0 \Byg G .
Pg o
Hi = (a /a )( 2 qti 2 qSi) Iy (3.26f)
S

It is to be noted that the partial energy collision integral (3.23)
1s simply one-half the trace of the partial pressure collision

integral (3.24); the partial traceless pressure collision integral .
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is obtained from (3.23), (3.24),
[G(mcsJ K 3 kascs)l = [d(mscs'jcsk)]t 3 JkE6(2 m_cg )] .

We see from inspection of the results (3.22) - (3.25) that
the final integration 1s, in general, untractable. In order to
proceed, we shall consider two limiting cases: (i) € << 1, (ii)

€ >> 1., In case (1) we consider general central force laws (i.e.

isotropic collision cross sections); in case (ii) we consider

general inverse power force laws. First, however, we shall derive a

relationship between the partial momentum and energy collision
integrals which is valid for all ¢ ; the result will afford us same

Physical insight concerning the transfer of energy between specles.

3.2 Relationship Between the Partial Momentum and
Energy Collision Integrals

The partial momentum collision integral is

> 3.2
[g(m cSk)gt = CSt ! d{; y yks(l)(aoy)e‘(y €) 1+
B, (V;=64) (75=€ )% Ry (y,-e)[1- XF-2)21} .  (3.27)
13 17/ Wy TE T Ry ey 5

We now rewrite the partial energy collision integral (3.23) in a
form which resembles (3.27),

> > 2
[a(%- msci)ll = a e, Cop / &y yks(l)(a ye~ -(y=e) {1+
st




4o
+ By (73-24) (32, )% Ry (vy=e)[1- EG-D3) +
aaly S vy (agyle B 5 (74=eq ) (yymeq) +
> > 2
+ Ry (yy-e )1 £G-0)°THa Oy, £ @ v 3,80 ()09

Fik(yi—ei)+sk[1- %{;FE)QJ- %-Si(yi-ei)(yk-ek)}

I+ I+ I3 , respectively. (3.28)

We see immediately from (3.27), (3.28), that
I, = aobekl:s(m.scsk)gt . (3.29)

We note further that I2 may be obtained by differentiating

[G(m.scsk)it with respect to ¢, ,

aa 3s(me . )]
0 s sk'st
I, = - + aoaekfs(mscsk)] +

aoa

> > 2
> (1) —(y-¢)°
+ 'ET'Cst S dy y Yy S (aoy)e {2Eik(yi-ei) +

-

L2
+ R L1~ 3G-01- 2 R (e ) (e} (3.30)

Substitution of (3.29), (3.30) into (3.28) gives us
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i

23l

aa 3a6(m e ); m
1 2 _ s sk’st t
[6(§-msc N o= 2 3e, ta, m Ekta(mscsk)gt +

+ ey £ & v 18P e D (r sem, )(y,mey) +

+S,+ & R )1~ &7-0)2- —<s+ Ry (74=¢4) (7me,)}
Kt 5 Rll- ¢ 1 1710 Wymey

(3.31)
and substituting the definitions for Eiy» Rys @, F 130 51 o (3.22b,e),
(3.26a,c,d), respectively, we obtain finally

a[a(m c ; m
[s(2m cD)] = (T ~T,) L 4 (- u s )]+
2 "s’s st m a aek m, Uge™ U S sk st
2C P_.
st (1) (y e) tik sik
 — m 2. J &y ¥ S (a y)e {( N N )(yi-si) +

1 3si 91,04 2,3 »\2
+ 'a—o (_NS_ + _I'\I'E')E g(yi-ei)(yk'ek)‘sik(l" '5'(:)7—5) )J} .
(3.32)

The underscored terms in (3.32) correspond to the case where the

Species' distribution functions FS, F

result obtained by Tanenbaum.’! The first underscored term is

¢ are Maxwellian; this is the

proportional to the difference in species' temperatures and
represents the flow of energy between species "s" and "t" (that
is, the increase or decrease of the random kinetic energy of species
"s" due to collisions between the "s" and "t" particles) in the

form of heat transfer (not to be confused with the heat flow
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vectors); the second underscored term is proportional to the
difference in species flow velocities and represents the transfer

of random kinetic energy between the species due to the "frictional

 heating" of species "s", caused by the forces acting on it which

arise when the flow velocities are unequal. Since the remaining
term in (3.32) vanishes identically when either ¢ = O (since

Ps 11 F O , and the integrands involving the heat flow vectors are
odd for ¢ = 0) , or when the species are in local equilibrium,
Fs = F‘o) » we may consider its contribution as an additional
"frictional heating" of specles "s" which arises as the species

come to local equilibrium with a common flow velocity.

Finally, when ¢ = 0 » all the terms in (3.32) vanish except
the first underscored term, provided Ts # Tt s since from (3.32)
and (3.23),

afé(mc )]
[5(mc)] =X (p_py ____sSkist
2s ma t S d¢e

3

eyt + & 55 P a e

3“8‘ CstK(T - Tg) f dy YBS(l)(a ye y #0,

(3.33)
iIf T, # T .

Thus, even when all the species flow velocities are equal, there

St11l exists energy transfer between species of different
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temperatures.

3.3 Evaluation of Collision Integrals for Small Diffusion
‘Mach Number

In this section we shall evaluate the partial collision
integrals (3.22) - (3.25) for the limiting range ¢ << 1 . For
convenience we bring forward the partial momentum collision Integral,
(3.22),

[6(m Co)d =

st = Cop J & v ¥iS m(a e -(F-8)° {1+E1J(yi-ei)(yj-e ) +

3
+ Ry (y;-epl1- §3-D2 . . (3.34)

If we consider [&(m csk)] as a function of the three independent
st

variables si(i = 1,2,3) , with all other quantities in (3.34)

treated as parameters (e.g. Psi,j > dgq » etc.), then for e << 1

we may expand (3.34) about e =0 using Taylor's theorem with
remainder
i ] - o
é(mec.)] = 6(m cq ) + . +
s sk st 0 Sei >0 1
2[6(m csk):I €4 €
+— L = oeEd . (3.35)
€49 €3 e=0

All four partial collision integrals have been calculated following
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this technique; however, the steps involved are extremely tedious
and lengthy and we shall not present them here. Instead, we shall
work with the direct expansion of the exponential in (3.34) and

retain terms up to those proportional to second order in

€
i

(1 =1,2,3) . For this purpose we rewrite (3.34),

2
N 2y e~ _ 2
[é(mscsk)gt =Cy /¥y ykS(l)(aoy)e pp eV {1+
HE, (¥,-64) (4= )+ Ry (y4-e,)[1- Hy°- 2y,¢,+e2)]}
ijvWi 1My o) ivWi ol 5 373 *
(3.36)

Then expanding the factor exp(Zype 2) , multiplying out, and

p—e
retaining terms up to second order in €4 5 We have

O (e}

20 :
otmeg)] = Cgp 7 & v 38V (agne™ (B (vyyy-yegyyeptesey) +

o} o] (@]
+RiyiEl- %(y2- 2yjej+e2)]- Rye (1~ %(yg- 2yjej)] +

o}

+ + - 4R, .v.e. +
pept 2Byg¥gVy¥pepm HEigViepe,

° 2% 2 2
+2Riyiype p[1- —5-(y - 2yJ eJ)J-ZRieiype p(l- R4 ) +

(@) 0

2
+ +2 B, .y.y.42 _2
A peYqtq Vpep¥aqt 13V 1Y s Ve YY1 (1= 5 Y

2)

2L, y,y,+ Ry, (1- 2 39)0) (3.37)
-€ ijyiyj iyi = 5 y 3 .
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where the symbol "o" above a term indicates an odd integrand
whose integral vanishes (recall that S dy h(y) = /ff dyldyzdy3h(§))-
Before proceding we should note that the convergence of the series

of integrals resulting from the expansion of exp(2ypep-e2)‘,

exp(2ypep-e2)~= (1 2y e+ 5%—ypepyqeq+ )2 ¥ .., (3.38)

is assured by the presence of the factor exp(—yg) in (3.36); thatb
is, the major contribution to the complete integral (3.36) and to
each of the Integrals in the resulting series (3.37) comes from the
neighborhood of § = 0 . Hence, we need not be concerned about the
possible appearance of large y in the expansion (3.38). In
additlon, the results of the expansion (3.37) agree exactly with
those found from the Taylor expansion (3.35). The remaining
integrations in (3.37) are all straightforward provided the‘"cross
section for momentum transfer," S(l)(aoy) , is a reaéonably simple
function of ay . For the moment we do not specify S(l)(aoy) s

but following the notation of Burgers,32 let

2 @ 2 ‘
AT LI y2j+ls(")(aoy) = Un fay &Y y23+3s(")(aoy) >0

(@]
(3.39a)
2 2b? (3.390)
5 'Z(1,1)
(1,3)
_ A
Gl - ¢ vy (3:39¢)
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¢ z1452-52 (3.394)
z =z -3 (3.3%)
IR N Al (3.39£)
- 315 Zzl,l) )
(2,2)

(2) _ 2 7 °?

z =l-z 273333 (3.39%)
(2,3)

'(2) = __)4. A !
zZ =1 35 ETE:T) (3.39h)
2(2) = (2 5 (2) (3.391)

7(2, 4y #

n(2) _ _8
z! = 315 —T——) . (3-393)
From Appendix A we have, in conjunction with (3.39a),

2 3/2

> -y 2j-1 (2) o (2,3)

Jdy e ¥y V¥q 8 (agy) = —5- 8q Z (3.40a)
.32

and S df e v y?I* 3y Y yryss(l)(a y) = 'TET{qusrs+6pr as*ps qr)z(zh?

(3.40p)

Expressions (3.39a-d) are those used by Burgers; expressions
(3-39e-j) are peculiar to this dissertation. Also, Burgers attaches

the subscripts "st" to the quantities (3.39a-d) as well as to the

cross sections S(m)(aoy) 5 Wwe do not require this distinction inas-

much as we are working with partial collision integrals. The
quantities (3.39a-j) are tabulated in Appendix A for various
interparticle force laws.
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Then using (3.39a-c), (3.40a,b) to perform the remaining integrations
in (3.37), we obtain, after collecting terms |

[s(me )] _ 2 (L,
sk st = 3 C ’CZ {2€ 2ZsiEik +

2
+ Bt e e R+ (21Dt 5 (T2'- 99)IR) . (3.40)

Substituting the definitions for Eik and R, , (3.22b,c)
obtain

eq P P
- Sik tik
[6(m csk)] = N vst{(utk— usk) 2z _o (—— - b —_) +

. q q
+ —2-2£(z+ '—;-(‘z'- 22)62)61k+ l—g—(z'-—Zz)eiek] (ps_i - ;?‘)} s
s

%o
(3.42)
where we have defined a collision frequency for small e
v, 2 2.¥2 86 (LD 2y D) 0 (3.42a)
st =37 WNa 3 N2 > '
50
with N ver = Neveg (3.42p)

since Séé“) = Su) (see (3.40a)). It should be mentioned that many

authors work with an "effective collision frequency for transfer of

momentum between species "s" and "t".,




48
= (mt/m )v (3.42¢)
with
M _ M
Ps¥st ~ PtVts (3.424)

The collision frequencies (3.42a) are exhibited in Section 3.6 for
various interparticle force laws. It must be emphasized that this
form for the collision frequencies is only valid for the range

€ << 1 3 in this range Vet is, in general, temperature dependent

and independent of the species' flow velocities. We shall see in

the next section that the converse is true for the range ¢ >> 1.,

The results for the other three partial collision integrals are
taken from Appendices B and C,

Energy: [6(2 mgc )] = —E-N vst 2 (u - u ) + 3 K(T -T )(1— 5-z:-:2) +

m S
K2T T, o1
+2p —5-E (——i ——1-1>+ 5 LD (1T -
uao t ao
m
-2 21 Jese J<—~°4J- —%) + 25 [200-0) (T=T )z =2 T 3e, -
S ao S
2
Qg3 g KTT, gy , L
(=L .ty ¢, e, ( )} (3.43)
Ps t ua3 "1 ps P

0

Pressure: [c(m c Jcsk):sl =2 == N st{TT'(utp usp)(utq usq)

(2)
* [(143z )GJ kq
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+(l—z(2))6p 8 JHR(T T )[ (1-z¢° )84, 22eye,] +

.ZKZTSTt o Pe P
+ " [(1-ze )ajpakq-ez(ejepskq) ](—Rq-pt - -.Rq-ps) +
(¢]

+{6Jpckq[(2K/a§)(Tt-Ts)(1-z+és2)—(3/u>mt(1-z(2)+ 2227 4
$2(e e 80 )T (/22) (T~ 1) 222 (KT /m a2)-(3/2m 2 (2] +

50 "870

v e b, [(or/a am 2@y Csea 4 Ftog
epeqdykk (2K/ag) (T-T) (2z-2")4m 2"/ 1} (=2 + —) -

5 Pt
-5 %—T—t- [18(ey8,4) "+ ey 8y, Sz + qpt) +
:f;-;cz(eJ " *(m: KT~ 2Rz - )z + 2 adn 2P +
+Le, 8 (HK(T, 1) (2~ £ 2)- anz 2yt Si %)} (3.48)

Ps t

Heat Flow: [6(§ms S sk)g = Lo'r_nh— Ng St{25(utk usk)ELl z K(T T )z (2)

2 2
UKD T 2
r—5E 4 K )2(1-32)+ —t aS (1-2)] +
H ao moao O
(K°TT,)°  p o
t S t
+ 80 &30 Pope * T Bpd t
Ham Py Pg
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m
+ lOC—u—K§(Tt-TS)2(2+19z-21z' )+2 g—- 53 (Tt-TS)(3-uz—l3z(2)+qu'(2))_
o o

m a
20K2 m2
3 zTT + a, (52=Tz" 1+3z(2))] (_J__ _..L) +
uao
Ko T . P P
+l4o St t——(T T )(2-9z)+ = (3+2(2)))¢, (Ldk _ siky _
Smt J pt pS
KT T
-8 =5t —== st {56Jk|:2 T,-T.) (L1z-6+ L L e2(13z '~ 131‘ 7)) +
Srnt O
+ am (1202 T 2(5(2), 18 2))#1ese L4 £ (nom ) (gt — 2) +
O

7 (2) 91 . &%
+m (£ 224 uz)J}c—gi+ —p-tb +

+ U5 chrio—:“— (T, =T )%(72"~52-2+¢2(1892"-3502"41712) ) +

m
e}

m
+ 10 K—2—£ (Tt-TS)(2+52(2)-7z'(2)+
o)

2

%52(172'(2)-92"(2)—82<2) +

2

T m
+ bgre -,375- 2))450 — 3 (z+ [ P(zr-22))+ -g-m—z (T2'-52-2 +

Uao
e ~(2)
+ = (632"-98z'+452+U422 7)) ]+ 1le. e

2
r—n—-—n- ('I‘ -’I' ) (272"-60z "'+ —&- z)+
a

K2T T,
5 k[10 _T (z'=2z) +

(Tt-‘I's)(18z'- ;,}ﬁ z +
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2
+ 292'(2) 112(2) 18211(2))+ (2(2)+9ZH 1uzv+iz)]}(__l _—J—) +

: (LthTsTt)2 5 pt
MMy 8o, ps Pt

In the partial pressure collision integral, (3.44), the symmetriza-

tion ( -°C)T, is with respect to the non-repeated indices, j, k .

The partial traceless pressure collision integral is of course glven

by (3.44) minus two-thirds ¢ times (3.43).

Jk

The results (3.42) - (3.45) are accurate to second order in
si(i = 1,2,3) ; they simplify considerably once the Interparticle
force law is given (i.e. once the "z's" are given). As will be
seen in the subsequent calculations of traceless pressures and heat
flows in Chapter V, the expressions (3.42) - (3.45) became quite
manageable for certain special systems (e.g. weakly ionized gas).
It should be noted that in connection with the fully ionized gas
system, Everett33 claims an accuracy of results to third order in
€5 5 however, his results are only to third order in €y implicitly,
due to assumptions concerning the relation between € and the elec-
tron and ion traceless pressures and heat flows. Our results are

accurate to second order in €4 explicitly.

Whein the species' distribution functions are Maxwellian, the

traceless pressures and heat flows vanish identically, and the
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partial momentum and energy collision integrals (3.42), (3.43),

1ol

reduce to Tanenbaum's™ results

Ed(m c

sk)J = uN vst(utk (3.46)

st
Uch)J 2 LNy Et@;%ﬁ+%mgagu-%u%l.

mo s st
(3.47)

Tanenbaum's results are in termms of the effective collision

frequency for transfer of momentum, "121—, » 8lven by (3.42¢).

The collision integrals for a simple gas or the "self-partial
collision integrals" are obtained simply by setting "t" = "s" (so

that ¢ = 0) in (3.42) - (3.45)

[s(m csk)] [6(2 m.c )gs = 0 (3.48)

Eﬁ(m CSJ Sk)Jt = - o) 271—,-1‘) \)SSPsJk (3.49)
1 z(2:2) )

[6(2 mscsc k)] =-5 ;ﬁ) Vesdsg ¢ (3.50)

Finally, if we form the sum over all species of the total

momentum collision integrals, we see immediately from (3.42) that

é l:ds(mscsk,:éC = 0, as must be the case for any level of

accuracy in ¢ since the total momentum of the system cannot change
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because of collisions (such a change is only possible through

external force fields, which are not involved in the collision

*
integrals). However, for the sum of the total random kinetic

- energy collislon integrals, we find from (3.43) that

Iz E6(1~m c2)J # O , in general. This is not surprising inasmuch
st 27s’s st

as the total random kinetic energy of the system can change because
of collisions; that is; part of the system's "ordered" kinetic

energy can be transformed into random kinetic energy. As a matter of
fact, for the special case of Maxwellian distribution functions,
(3.47), we have

2 t > > 2 > > (2
£ [8(xmco)] I wNv, = (u-u) = 3 WwWN_v_(u-u)c,
s t 27s’s st s t s st m t s S<t s'st*’t s

s, t = 1,2,3, ... , which vanishes if and only if Gt = a*s for all

5, t .

3.4 Evaluation of Collision Integrals for Large
Diffusion Mach Number.

In this section the partial collision integrals will be
evaluated for the limiting case € »> 1 (i.e. at least one of the

components e, is "much larger" than unity). The partial momentum

collision integral is again

*

Note that for any quantity Q which is conserved in a
collision, it can easily be shown from the Boltzmann binary
collision operator, (2.21), that = (GQ)St = 0.

s,t
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> 3.2
, _ > (1) ~(y=e)’ v
[6(mscsk)gt =Cy /&y %S (aoy)e € {1+Eij(yi-€i)(yj_€j) +

+ Ri(yi-ei)tl-é.(§-2)2j} . (3.51)

Upon introducing the transformation

>

Wzy-¢, aw=dy ( e finite) ,

expression (3.51) becomes

1/2

[5(mscsk)gt _Cy J dﬁ(52+2wpep+ W) (et w st (aolg-i*ﬁl)e‘wz.
* {1+E ww+Rw(1—§w2)} (3.52)
B 55 R R B A § 5 ' )

We are now in a position to expand Ed(mscsk)] in an "e-series,"
st

in a manner analogous to that for the case of e << 1 ; in the

pPresent case, however, we expand the term (52+2w e + w‘2)l/2 and

PP
retain only the higher order terms in e . We see that the

collision cross section in (3.52) is a function of e s hence, in

order to perform the e-expansion we must specify the functional
(%)

dependence of S upon e . For this purpose we consider those
5(2)

cross sections which correspond to inverse power interparticle

force laws,

fst = Kst/rp s 2 A N (30533)



55

where

)-n/2

38 (g) A&, (0#0) (3.53b)

Zn(Kst/u

S(z)(g) %'02{2-'{1+(-1)2}/(2+l)] s ("hard spheres," p + « , n +» 07

« (3.53¢)

with n = -4/(p-1) . (3.53d)

| The dimensionless cross section Az(p), typically of order
unity, is tabulated by Chapman and Cowling>® for ¢ = 1,2 for
cértain values of p . The quantity "¢" appearing in (3.53¢c)
is the sum of the radii of the colliding "hard spheres." The cross
sections S(l)(g) s S(2)(g) are given in Table 1 for various
interparticle force laws.

*
See reference [34]. Whenever we are dealing with force laws

of the type (3.53a) the results of any calculation will be for

n# 0 ; the corresponding result for "hard spheres" can be obtained

by replacing 21rAl(p) by 1r02 , and 21rA2(p) by %no2 .
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TABLE"ZL.-J COLLISION CROSS SECTIONS FOR VARIOUS FORCE LAWS

Force Law n S(l)(g) 3(2)(8)

Hard Spheres 0] 1702 g— 02

Maxwell I;Iolecules 1/2 . A (5) 1
Kt/ T -1 2n(t<st/u) A,(5)g e S (g)

—

/7 -2 | anle/ua (3)g £ S @

7/3 3/2 -3 (1)
kgt/T =3 | 2nkg/u) A (7/3)e 1_177/_3_) ST (g)

# S8 1 . 2. 4| 2@
Coulomb, Fw—ez;?_ -4 2n(eset/4neou) A (2)g A—lT-2-)S (g)

*
€ is the permittivity of free space.

In terms of ¢ and w the collision cross sections (3.53b)
become

-3 n/2
sm(aolml) = 2m(k  /u) ZAl(p)ag(ezﬁ--?w €+ w2)

bep > (3f54)
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so that (3.52) becomes
n+l 2
= n+l
[6(m cSk)gt Clie fdwE1+(-—€PLE + tZ—)J (e, tw, e {1+Eij 1%y
+Ruw(1-£%)) ,  (3.55)
where Cét z 2n(a<st/u)-n/2 Al(p)af)1 Cst . (3.56)

We shall evaluate the integral (3.55) in such a manner that all

terms of zero or higher order in ¢ which occur in the integrand

are retained (note that the factor '+ does not enter into this
consideration). Then expanding the binomial in the integrand of
(3.55), multiplying out, retaining only those terms of zero or
higher order in e , and performing the integration s we obtain

2 W_€
[o(m_c k)] = Cle ety i eV [14(n+1) —EE%P- oot W)L +

2 2
+ Eijwin-F Riwi(l— W )}

2 o
Cét Saw e {ek+ekEijwin+ekRiwi(l =W ) +

o o

+W+Ei,ji,jwk+Riik(1-—w)+

0
+ (n+l) _L Ew+ E; ywWyWyW+ Rywyw (1- -W %)1)
E
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or, [&(m.c A 1 %, (3.57)

S sk
where terms with overscore "o" again indicate odd integrands
whose integrals vanish. We note that the convergence of the serles

of integrals resulting from the expansion of the binomial

2 (n+1)/2
L1+<-£fP-+—Jn

) 1+ﬂ'll(w € +w2/2) + oo (3.58)
2 2 PP
€ € [
is assured by the fact that the major contribution to the integrals
comes from a neighborhood of w = O , due to the presence of the
factor exp(-w2) in the integrands; hence, we need not be concerned

about the appearance of large w in the expansion (3.58), which is,
in general, only valid for

Rewriting (3.57) we have

Ea(mscsk)J = uNgv (4 -u ) (3.59)

where we have defined a Qllision frequency for large ¢

3

-n/2 > > n+l

Vg = 21r(n<st/u) Al(p)Nt]ut-us| > 0, (3.592)

with Novge = Npveo - (3.59p)
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The "effective collision frequency for transfer of momentum between

species "s" and "t" "is (ef. (3.42¢,d)

v’;‘t = (my/m )v (3.59¢)

M _ M
with PVt = PeVeg (3.59d)

The collision frequency (3.59a) is exhibited in Section 3.6 for
various interparticle force laws. This expression for the collision
frequency is of course only valid for the range ¢ >> 1 3 in this

range v st is, in general, dependent upon the difference in species’

flow velocities and independent of species' temperatures. This is

to be compared with the situation in Section 3.3 where the collision
frequency was shown to be temperature dependent and independent of
flow velocities (see 3.42a). This 1is one example of the striking
difference in form of the partial collision integrals between the

two extreme cases e << 1 and € >> 1 .

We note that, according to (3.59), the partial momentum
collision integral vanishes when e = O ; this of course simply
reflects the neglectance of the lower order terms in ¢ = - the
Integral does not, in general, vanish when e = O (except for
"Maxwell molecules,™ c. f. Section 3.5). Such a case s however, is

pathological, and in any event we have for the vector partial

momentum collision integral
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-

ces(msés)g WNgvg (B0 (3.60)

which cannot vanish inasmuch as u # u . We note from this result

that Ea(m ¢g)]  1s in the direction of ¢
st

level of accuracy, and does not involve the traceless pressures op

> .
z (ut'us)/ao s to this

heat flows. This is to be contrasted with the result of Section

3.3, equation (3.42), where [G(m c )J is in the direction of ¢
St

only if the species' traceless pressures and heat flows vanish.

Bringing forth the results from Appendices B and C for the
other three partial collision integrals we have

Energy: EG(%-mscg)]t =(L/m&N vst{mt(ut—u )+ (n+M)K(Tt-T ) +
S
+ (1) (e 0 /eI (1) (m/2) (L 4+ 2S5
n+l) Eiej € n m, o, o

P P
¥ %ﬁl - S (3.61)
S

Pressure: |:dS(m.s s sk)] = (u/m Ny (= - 3 i )(utj'usj)(utk Ut

A €4€
* g T Byl KT Ly “E D] +

UK2T T
Te ~ 2.k
" Edjpékq+(n+l)(6kqepej/e Y1( .

UI

+

O
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A
_R‘l _29

O

: A,
2% 2K
+ 2(n+l)(6kqepej/e Y[ &= a2 (T, =T )+(1- ——l)m] +
0

+ (n+l)(e € /e )mtEGJk(n"B) r‘* (n-1)(e ek/e )(1- n‘ )]}

(_29.+_2.C1)}
Pt s

Heat Flow: [_6(2 m_c2c )] = (u/m2)N_v gllug, ~u sk)ESKz (T, -Tg )

(3.62)

s s sk o’"'s’s
(@]
2
2 m A m A
5K o 2 t 2 .o 2 2
+ ? TSTt r + th(Tt-TS)(8+3n- -AI (n+6))+ T ao (8e“ (1~ ﬂl) +
(o]
2 2
A KT T, ) P P
2 2 st s t
+ 2n~+ 12n+ 16—~ q (n+l)(n+6))]+ '—2;3—— ei(——2- PSik+ '—2- Ptik) +
H % Pg P

HRCTECH T (T ~T) +2mt 2 (T -Tg) (nt3+ g'AE) +

+m2 (n+2) (1 ifAZ)J+ (e;e,/€%) (1) [lm, S (7 -7 )(1- 3 2) +
o n T2 E] 8ofK\E18y/e /(1 ”‘“taz tT s’ T TR

2
2K“T T
n si,j Prig st UK
+mf (- >J}( oy Tt a O ic (Ty-T) +
0
A,

+ m (3m(1+ 2A ) 12nt)e (egey/com (1—% >}<—m —Siin
2 K2T T, » A,
5_?" {dlkL (’I‘ ~T )(2n+l7)+ m (n+1) (n+8+(1+ —) —) -

an ao 1
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10 2 J+2(n+1)( °)18 & (7,-1_)+om, (2n+ & (n46) -pz)]}’-
T 10 R Mpreintl) (e e /e 2 UeThe/ T (antSm g ()

%

A L N K° 2 (ont17
(—p; + -1—0-;)- £ 18,08 K] (T =T )" (2n#17) +
0 ' '

"
+m i-z- (Tg) (2L (B +( (1) (1+2)~20) 2) +

i
o 1
+ 12 (5+(n#) (n#6) (1 3% J+(n+1)( 2E6K2T 4
m (5+(n n -2-;\-1-)) n )eiek/6)3 ;'E(t'Ts)
(o]

A
+ 2m B (mm) (a5 aanest) ot +
2 |

A q q
+ m§(2n2+1m+.7+(2n2+ 22 ntg) K?')J }(p_si. 2 SO

2 1 s Pt
(K21 T, )° o P )
b st 2 t S
to— ESik(2n+l7)+9(n+l)(eiek/e )](-E'qti' —5 g0} -
H ao pt P s

(3.63)

An interesting observation can be made concerning the influence
of the traceless pressures and heat flows upon the partial collision
integrals. Comparing the results (3.60) - (3.63) with those of
Section 3.3, (3.42) - (3.45), we see that, in general, the traceless
pressures and heat flows have considerably less influence upon any
of the partial collision integrals for the range ¢ >> 1 as against
the range e << 1 (this observation is of course with reference to

the order of the e-coefficients which appear with the traceless
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pressure and heat flow terms).* This decreased influence of the
higher ordef velocity moments can be seen more clearly if we lower
our level of accuracy by discarding all zero order terms involving
the traceless pressures and heat flows; the expressions (3.60) -

(3.63) are then drastically simplified to

)+

Momentum: Eé(m c )it = uN "st(ut (3.64)
o _
Energy: [6(3 msci)]t = 2(u/m N v_, {52 (T =) %+ -(I‘-;—”)K(Tt-frs)} X
S
(3.65)
Pressure: [G(ms s Sk)] (p/m )NS st{—-{(4 3 A )( Ugy- ,j)(utk ok

. |
+6 ﬁ(ﬁt-usﬁmm T)[ij+(ejek/s2)(n+l)]} (3.66)

12 2 | K2 2
Heat Flow: [6(5 mscscsk)J = (u/mo)Nsvst{(utk-usk)[S = (’I‘t-Ts)
st a
(e}

K2 mo A2 .
+5 Z TgTy 7 + mK(T -T,) (8+3n~(nt6) vy )+
o)

" .
The case of "Maxwell molecules" is an exception; for this

force law the partial collision integrals have the same functional
form for all ¢ - c¢. f. Section 3.5.
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m A A
2,9 2 2 2 2
ao(8e (1~ §KI)+2n +12n+15-(n+1) (n+6) KIQ] +

' '(2K2TsTt)2 Ps Py 4K
Y3 =1 Bant T Bepd (880 o (Te-TY)
M, s Pt &

A
+ om, 2 (T, T)(n+3+—I21-) ¥

A A.
+ 1 (n#2) (1~ %ﬁ)h 8oty £33/ (D)l tmg &5 ()2 g@ +
[o]

KT T

A P_. P
2 n’2 sij t1] st 4K

(T T ) +
O

A
+ m (3+(1+ 2A a2l (g ey /eim (1- 3 )}(Lil —31-1)} :

(3.67)
We thus see from (3.64) - (3.67) that, to this level of approximation,

the partial collision integrals, with the exception of the partial
heat flow collision integral (3.67), are the results corresponding
to the case where the species' distribution functions are Maxwellian
(expressions (3.64), (3.65) are identical to Tanenbaum's resultsll);
that is, for the limiting case ¢ >> 1 , the non-Maxwellian or
"non-equilibrium" (cf. Section 2.4) parts of the species distribution

functions have little effect upon the partial collision integrals.

Finally, the coments at the end of Section 3.3 concerning the
sums over all species of the total collision integrals apply here

also; that is, I & Es(m ¢

1 2
Y] =0 £z [8(zmeS)] #0 in
s £ sk ’ st 27s’s st ’

st
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general.

3.5 Exacet Evaluation of Collision Integrals for the
" ‘Maxwell Molecule Force Law.

For the case where the particles obey the "Maxwell molecule"

force law,

£ = Kst/rS , (i1.e. p=5,n=-1) (3.68)

the partial collision integrals can be calculated exactly (within
the limitations of the Boltzmann binary collision operator), without |
any knowledge of the species' distribution functions. In this

section we shall give the details of the caleculations of all four

partial collision integrals, for the interparticle force law
(3.68).

From (3.11) we have
Eﬁ(mscsk)lt =y ff FsFtlgng(l)(g)desl s (3.69)
s

where, from Table 1,

1/2
sm(g)J = an(kg ) AT, (3.70)
n= -1
so that
= _ 1/2 >
Eé(mscsk)] = 21r(|<stu) Al(5) Sr FSFtlgdedVl . (3.71)

st
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Recalling that g = V,=V , we then have

(6(m CSk)gt = 21T(|<stu)l/2 Ay (5) JI FFyq vy k)dvdv

= 2n(kgg) ™2 A (5)INN v - NN ad
or, [8(m csk)it WNGvoe (g =ug ) s (3.72)
where vy, = 21 A (5) (kg /W)Y AN,  (3.72a)

is the collision freguency for Maxwell molecules which is

independent of the flow velocities and temperatures (cf. ( 3.42a),

(3.59a)). I.n obtaining (3.72) we have simply invoked the definitions
for Ny, Uy , (2.3), (2.5) .

For the partial pressure collision integral we have fram
Appendix B

Co(m sCs Sk)gt =u /I FF lg{Egk(co:J 530+ &5(cgmu Sk)JS(l)(g)
m ' 2 (2) > > :
- 5= [3gjgk- g aijS () }avav, . (3.73)
¢}

From Table 1,

S|y = 2nleg/ 2 a7 (3.74)



T'--f-u--
o

> o
and  3g;&, € &gy = 3(eyy %tk skt M0kt Ceit ey Caic -
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Substituting (3.70) and (3.74) into (3.73) glves us

S sjcsk)gt = 2“(Kst“)

- (mt/2mo>E3ngk-g2<SJkJA2(5)}d§d§l .

9 FSFti{[gk(coJ-uSJ)+gh(cok-usk)]Al(S) -

It will prove convenient to express all velocities in (3.75) in terms

of the random velocities, 35, 3£ s we have

2

(¢}

|
ms: ¥

L}

(mg/mo) (EHg ) +(me/m ) (43, )T

(mg/m,)C+(my /m )e +(m/m )a &,

o
so that gk(coj'usj) =(“%/mb)°sjctk+(mt/mo)ctjctk+
o

aoctkej'(ms/mo)csjcsk -

+ (mtﬁn

)
o o}
- (mt/mb)cskctj'(mt/mo)aoejcsk *
o o
+ (ms/mb)aoskcsj+(mt/mo)ao€kctj +
+ (mt/mo>a§€J €k ’
o o

e} 0 o

2
- aoskcsj+aoejctk‘aoejcsk+ao€jek)

(3.76a)

(3.76b)

(3.76¢)
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e +2a e: -2a e

222 o)
st 0f1%17%5€1 1™ csicti)éjk (3.7648)

2
(ct

where terms overscored with "o" indicate integrands whose integrals

over dvdv, vanish due to the fact that <&_> = <G> =0
S g t

Substituting (3.76c,d) into (3.75) gives us

1/2
[6(m sCs3C k)] = 2N(Kstp) If P Fr1 {2A (5) [(m /m Je

St t3%k T

» 2
- <ms/mo>°sjCsk+(mt/mo)ao€jekJ"(mt/zmo)A2(5)E3(ctjctk +

2222 e
sjcsk+ao‘J k) ij cite ta e ]}dvdv1 . (3.77)

Performing the remaining integrations by reference to the definitions
for Ng» Tg» stk’ (2.3), (2.8), (2.13), and rearranging, we obtain

5) 2
= (w/m o NgVst 2 —_T§7! Jk m (ug=ug)  +

A, (5)

[G(msch sk ]

)+ 2K(Tt-Ts) +

31

A (5)
+ 2(W1_ _&)- —-gym (_ch+__1__)} o (3.78)

The partial energy collision integral is glven by one~half the trace
of (3.78),
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1.2 m
[é(z-mscs)g = 2(L/m \N Vi { 2 (u -u ) + =2 K(Tt-Ts)} . (3.79)

For the partial heat flow collision integral we have from

Appendix C

[s(3me scskn = (w2) 1 FF eil2g, (e =u_,) (e mu) +

+ g (g m/m )23 5215 (@) +

+ Llmy /i ) (e mugy)-30m /m ) (e oy, g8, 352 (g) 1V,

(3.80)
Substituting (3.70), (3.74), (3.76a,b) into (3.80), multiplying out,

and retaining only those terms which do not involve <3s> <3 >

?

s tt
(these of course vanish), we obtain, after collecting terms

1 FF
2 _ 172 s tl
[6(2 meece ) Jt = "(Kst“) [ === m {-c csk[(3m )A +
0
+ 2mm A ]+2ct 1 t(2A 5+ C51Caio i[2(m -m, ) A +

+ (m m, - 3mt)A J+lc 2A ) +

ti tk (o} t 1(
+ csaoekE (mt-m ) °p +(mt+3m mt)A ]+

+ 2ctmta e, (2A,-A, )+2a3m e, (2A;-A,) JaVAV, . (3.81)
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From the definitions for N_, Tgs Pagic » Es , (2.3), (2.8), (2.13) ,
(2.16) , the remaining integrations yield

[6(2 mscscsk)Jt = “N v t{Y(mt/m ) (ut-us) (utk sk

+ SK(ug~u )EY(mt/m )(T, T )H(1/2m )'I'J +

sik Peik. M A

+ (ugyugy )2y (my/m )2 (S » )'*'("'(r -1)+1) Si“J +
S
2, %tk me My Ay Qgy
+ 2y(me/m ) (2 = Hye(p L 30 L2y J8k (3.82)
Mo’ T s My 7 WAy e T
where v = 2-A,(5)/A;(5) . (3.822)

It is important to note that in all the preceding calculations
no knowledge of the species' distribution functions has been
assumed; the partial collision integrals have been evaluated using
only the definitions in Section 2.1 for the first thirteen velocity

> >
maments N_, ug , Tg (or Pg ) stk > 4y . Furthermore, since
the calculations are exact, the results are valid for all diffusion
T T '
Mach number, ¢ = |ut-us|/ato

The highest order moments occurring in the exact results are
the traceless pressures and heat flows, and these appear linearly.
Since our "thirteen moment approximations" to the species'

distribution functions (2.41) are accurate "up to" these moments s
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we expect the approximate results of sections 3.3, 3.4 to agree,
for the case of Maxwell molecules, with the exact results of this
section, provided only that the former are of sufficient accuracy
in ¢ .* This is indeed the case as can easily be seen by
substituting the appropriate values for the "z" integrals from
Appendix A into the results for e << 1, (3.42) ~ (3.”5),** and

n = -1 into the results for e >> 1 , (3.60) - (3.63) .

Due to the fact that the results for Maxwell molecules are’
independent of the species' distribution functions, it seems
appropriate to employ this force law as a test for accuracy of any
calculations based upon assumptions concerning the species'
distribution functions. We have just done this for the approximate

results of Sections 3.3, 3.4, We shall now examine the accuracy of

13 ly

the calculations made by Burgers - and by Lyman,l in reference to

the exact Maxwell molecule results; we shall show that their

calculations do not give the correct results for Maxwell molecules.

%The fact that the exact Maxwell molecule results contain no
products of traceless pressures and/or heat flows assures us that
the discarding of the ¢_¢, term (cf. (2.48))in the approximate
calculations will have nd gearing upon the accuracy of the

approximate results insofar as the Maxwell molecule force law is
concerned. '

**In the approximate result for the partial heat flow collision
integral for e << 1 , (3.45), there is no third order term in ¢
as there is in the exact calculation for Maxwell molecules, (3.82);
this simply reflects the level of accuracy in the approximate
calculation, i.e. to second order in ¢ .
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The calculations of Burgers and Lyman are somewhat similar to ours
with the very importent difference that they are based upon an
expansion of the species' distribution function in terms of a

random velocity 38 which is relative to the flow velocity of the

mixture; that is,

—cé2/aé2
e B0 (gt = [1+6!(31)] (3.83a)
s s s 1T3/2a,3 s s ’ *
S
where Eé = V=u s (3.83b)
U= (2 pU/E oy (3.83c)
s s

and where the "s"- species' temperature, Té » and all higher

velocity moments are defined relative to gé s €8,

-g-KTé = < %mscé2> . (3.83d)
S

In Burgers' expansion, aé2 = 2KT'/m, , where T' = (& NSTé)/Z Ng
S s
S0 that only small temperature differences are considered; in

I

Lyman's expansion, aé2 = 2KTéAns .

Let us consider the exact Maxwell molecule result for the

partial energy collision integral, Es(%-mscéz)J . Introducing
st

the diffusion velocity of species "s"
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I RE R S (3.84)
we have Eé z VU = (V—ﬁs)ﬁs = Esﬁs (3.85)

where gs 1s the random velocity used in this dissertation, (2.6).

We can then express [6(%’ mscéz)l in terms of our partial
st

collision integrals; we find fram (3.85),

1 042y el 2yl 2 >

[5(5 m.c! )gt = [6(2 m_cS)+6(5 mWE)+8(m W cs)it
1 2 1 2 > >

ory, [§(zmec!'*)] =([8(mc%)] +W-[s(m 3 )] (3.86)
2°8’s st 2 s’s st S s’s st

by reason of (2.25a,b). Substituting the exact Maxwell molecule
results (3.72), (3.79) into (3.86), we obtain

1,2 _ M 5 > 2 3
[6‘(5 mc! )gt = 2(wm Ny { = (4 -u )+ 5 K(T,-T ) +

+ (m /20N @)1 (3.87)

The temperatures Ts, Té are related as follows

3_ - 1 2 = l 2 1 2 oo
2K'I‘s'<2mscs>s <2mscs+2msws'mswscs;
=3 gpr 1 w2 ;
_21{'1‘s 2msws (3.88)
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since < 81> = < S+ W > = ﬁs . Substituting (3.88) into (3.87),
g |

> >
recognizing from (3.84) that Gt-ﬁs = W -W_ , and collecting terms,

we obtain finally

L&z mscj)gt = 2(u/mMNyve (3 K(TI-T+ F (n -m W_W.} . (3.89)

The result obtained by specializing Burger's36 or Lyman's37

calculation to the case of Maxwell molecules is
l‘. '2 = .3. L
[5(2 m_c! )iﬁ 2(u/m INov {5 K(T} T1)} . (3.90)

Camparison of (3.89), (3.90) shows that Burger's result is missing

a temm proportional to

>

ﬁs-wt = (B0 @G-0) . (3.91)

This Is a "higher order" term inasmuch as the expansion (3.83a) is

only valid for “small" lﬁs—ﬁ| , "small" in the sense that3°

Y '

Ius-u[ <al . (3.92)
The absence of the higher order term (3.91) from Burger's result is

-
due to the fact that W, appears linearly in the expansion (3.83a),

occurring in the non-Maxwellian or perturbation part ¢é(3é) , and
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thus because the product ¢é(3é)¢é(3{) 1s neglected in the
calculation of the collision integrals, there can be no terms in

the results higher than first order in the diffusion velocities,

>

W, .
s

Similar discrepancies can of course be exhibited for the
partial pressure and heat flow integrals; in the case of the partial
momentum collision integrals, the diffusion veloclties enter the

exact Maxwell molecule result linearly so that no discrepancy

- arises.

We thus see that the results of the expansion (3.83a,b,c) are
quite limited in accuracy campared to the results of our expansion

(2.41), (2.6); we pay a price, however, in the complexity of the

results.

Before leaving this section we should point out that the
Maxwell molecule force law is not merely an academic one; it has
been used as a realistic force model in the scattering of electrons

by neutral atoms.39

3.6 The Collision Frequencies as Functions
of the Diffusion Mach Number

In this section we shall exhibit the collision frequencies
introduced in Sections 3.3, 3.4, 3.5, as explicit functions of the

diffusion Mach number e for various inverse power interparticle

force laws.
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Recall from Section 3.3, equation (3.42a), that for e << 1

the collision frequency is given by

= (1,1 . (3.93)
Vet = (2/3)NtaOZ
Substituting the expression for Z(l‘l) from Appendix A, we have
for inverse power interparticle force laws, fst = Kst/rp s

n = -4/(p-1) ,

(8/3)/ T(3#/2)A; (0) (e /M) V2N a™ | ns o
Ve T (3.94)

(8/3)/F'02Ntao s n=0, ("hard spheres") .

From Section 3.4, equation (3.59a), we have for e >> 1

3

-n/2 > - Dtl
2ﬂ(KSt/u) Al(p)Nf|ut_us| s n#O0

st (3.95)

W02Nt|a£—ﬁs| » n =0, ("hard spheres") .

In (3.94), (3.95), the results for "hard spheres,” n =0 , are
obtained from the results for n # O 1in accordance with the foot-

note on page 55.

From (3.94), (3.95), we have, for all values of n , the

normalized collision frequency




1 , e<<1

<2
(1]

st | (3.96)
n+l

3V
H?T§;E7§)E s €2>> 1,

where the normalization is with respect to the small diffusion Mach

‘number_collision frequency, (3.94). Expression (3.96) is evaluated

below for various Interparticle force laws

1 , e<<1

n

Vet (3.96a)
(3/7/8)e , € >>1

hard spheres, p >« 4 n =0 :

ce

Maxwell molecules,*p=5, n=-l: v, = 1 forall e (3.96b)
1 , e<<1
p=3, n= -2: ¥, = (3.96¢)
A/t , e > 1
1, e<<1
p=7/3, n= -3: 38,0 = | (3.964)
(3/2)€-2 , € >> 1
1 , e<<1
Coulomb, p=2, n= -h: Vv, = (3.96e)

Ga/We3, e > 1 .

*

Note that, as pointed out in Section 3.5, v
of flow velocities and temperatures for the case
molecule force law,

is independent

st of the Maxwell
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The results (3.96a-e) are exhibited in the log-log plot of
Figure 2.

Hard spheres
(n=0)
Maxwell molecules

1.0 far—B
T (n= -1)

<

st for™3
(n= =2)

0.1 4 fOLI‘_7/3
{n= -3)
Coulomb

: far_2
0.01 } (n= -4)
0.1 1.0 10

FIG. 2 COLLISION FREQUENCY AS A FUNCTION OF
DIFFUSION MACH NUMBER FOR INVERSE-
POWER INTERPARTICLE FORCE LAWS.

Inspection of Figure 2 shows that, in comparison with the
Maxwell molecule results, tst elther increases or decreases with
increasing e depending upon whether the power p in the force law
is greater than or less than 5. The éxplanation for this is fairly
simple; first, from (3.53b) we see that, while S(l)(g) decreases
with increasing g for all possible values of p , 2 Sp <=, 1t
decreases much faster for long-range (small p , large Inl) forces

than for short. Tanenbaum shows that
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<g™> = 3 el 1) ;

hence, in an "average sense" g increases with increasing ¢ .
Thus, the "average" cross section falls off with increasing e ,
but at a rate which increases with the range of the interparticle
force law. Since the collision frequencies depend strongly upon
S(l)(g) » it follows that a plot of Sst as a function of increasing
e , Figure 2, when compared with the Maxwell molecule results

(p=5 , n= -1), should increase for shorter-range forces (larger p ,

smaller |n|) and decrease for longer-range forces.




CHAPTER IV

SF
KINETIC MODELS FOR THE COLLISION TERM (Egocollisions

Up to now we have employed the full Boltzmann binary collision
model for the term (GF/St)coll., the average time-rate of change of
the distribution function due to collisions. We have seen that the
calculation of the ensuing collision integrals, fQ(éF/st)coll.d3 s
has been tedlous and the results quite cumbersome even after several
simplifying assumptions. The origin of the complexity lies in the
fact that the Boltzmann collision operator takes Into account the
geometry of each possible binary collision and the calculation of
the accompanying collision integrals requires knowledge of the

distribution functions (except for the case of Maxwell molecules).

In this chapter we preseht kinetic models (for general gas

mixtures) as substitutes for the Boltzmarn collision operator; the
models possess relatively simple mathematical forms, but duplicate
several important properties of the Boltzmann operator. The models
do not involve the geometry of the individual collisions; they are
essentially statistical averages over all possible collisions with

the interparticle force law occurring implicitly in a phenomeno-
logical collision frequency.

Generally speaking, such models are not used for the calculation

80
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of transport quantities (e.g. coefficients of viscosity and thermal
conductivity); more often, they are substituted for the Boltzmann
operator in the Boltzmann equation which is then solved for the
distribution function, either directly or by taking moments. How-
ever, in order to be reasonable substitutes, the models must be able
to reproduce, at least in part, the properties of the Boltzmann
operator. The models must conserve the species mass, total momentum,
and total energy, in order to be physically aceeptable; furthermore,
the collision integrals of the Boltzmann operator should be
reproduced as nearly as possible, including the pressure and heat
flow integrals. It is with these considerations that this chapter
deals; the models presented are constructed in such a manner SO as
to make the calculation of the partigl collision integrals possible

without explicit knowledge of the distribution functions.

The existing kinetic models and their collision integrals are
appealing in their simplicity; however, this simplicity results in
a shortcoming to a certaln extent inasmuch as certain important

results of the Boltzmann operator cannot be reproduced.

The first two models we shall analyze are the Gross—Krook.l
and Sirovich modelslg; we shall find that these models . are in
serious disagreement with regard to the partial pressure and heat
flow collision integrals of the Boltzmann operator, béth in the
form of thelr results, and in the magnitude of certain terms when

there are large differences in the species' masses. We shall next
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introduce two new models which overcome this difficulty to different
degrees. The first is a revised form of the Sirovich model, while
the second 1s based upon a velocity-space expansion of the collision
term (SF/Gt)coll. and reproduces all four partial collision

integrals of the Boltzmann operator exactly.

4.1 The Gross-Krook Model

The Gross-Krook m.odel18 as originally presented was for a

blnary gas mixture; the extension to a system composed of an

arbitrary number of species is straightforward. One simply lets

(sFa/at)colL = g(éFa/Gt)ab = -z v'b(Fa— ¥ (4.1)

b al ab)
coll.

where "a" and "b" are species subscripts, Véb i1s the model's

collision frequency between species "a" and "b" , taken to be

*
velocity independent, and

> > 2,2
-3/2a—3)e"("‘uab) /2 2
ab

Vop = Na(n » Ay = 2K Tab/ma (4.23)

&
]
=
3
m
3

=0 . (4.2b)

*
If ”éb = véb(S) s then, in general, the specles' mass cannot
be conserved, 1.e. [é(m )], #O .
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The self-collision term is just the Krook modeluo for a simple gas

(o))

(8F,/6t),, = -vI (F-F, (4.33)
coll.

where FO) = v ) (4.3b)
a aa

The parameters in the model (4.1) are the "mixed" flow velocity
Gab s the "mixed" temperature Téb » and the model's collision
frequency véb » constituting a total of five scalar parameters.
The number of parameters is thus more than sufficient to allow the
model to reproduce exactly the partial momentum and energy collision
integrals of the Boltzmann binary collision operator for the most
general type of problem. However, in order to obtain relatively
simple expressions for the parameters, we shall only require the
model (4.1) to reproduce these integrals for the case where the
specles' distribution functions are Maxwellian for e << 1 (general
central force laws) and for e >> 1 (general inverse power force
laws); the restrictions on the distribution functions and e will
be removed for the Maxwell molecule force law. Once this 1s done
the requirements for conservation of total momentum and energy are

automatically satisfied by the model.

We see from (4.1), (4.2b) that the model automatically conserves

the species' mass
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> >
[G(ma)]ab I ma(GFa/Gt)ab dv = -m vab J(F wab)dv

coll.

-, v' (N N ) =0. (4.4)

The partial momentum and energy collision integrals of the
Boltzmann operator for Maxwellian distribution functions and- e << 1

are glven by (3.46), (3.47), respectively,
[8(m,C )15 = Ny (G- G,) (4.5a)

mb

[8(3 me2) Iy = Nyuy (w/m )3 K(T- T+ R G- 8021 . (b

Note that (4.5a,b) are exact for Maxwell molecules (see (3.72),

(3:79)). The corresponding integrals of the Gross-Krook model are

[G(maga)]ab a ab m (uab ua) (4.6a)

m
(85 mue2) Ty = Npvl 3 KT - T+ -2 (B - 871 . (4.6b)

Equating (4.5a) to (4.6a), and (4.5b) to (4.6b) gives us

(=5 4
It

ab = ap (/M) (G- U )+ U (4.72)

3
!

ab = Tt 205 G/m (BT, Yoy (2-0 ) (u2/3km) (B- B2 (4.70)

= !
where ay = vab/vab a/vba 2oy o (4.8)
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since Navab Nbvba and Navab = Nbvba » due to the fact that the
total number of collisions per unit time per wnit volume of "a"

particles with "b" particles is equal to the total number of

collisions per unit time per unit volume of "b" particles with
"a" particles.

If we identify vab in (4.1) with the actual collision

frequency, Vap 3 then o4y = 1, and (4.7a,b) become, respectively,

>

uy = (m ua+ mbub)/m (4.9a)
_ 2 > > 2

Tap = Tgt 200/m) (BT )+ (u%/3Kn) G- 502 . (4.90)

Note that for a =b , we have the trivial results Gab = Ga s

Tab = Ta » independent of the value of %n (see (4.7a,b)). The

results (4.9a,b) agree with those of HamelL‘l’Ll2 and Morsqu although

the approaches used by these authors differ considerably from ours

*
and involve assumptions which we have not used.

Although this identification of collision frequencies is

*
Hamel's analysis is based exclusively upon the Maxwell

molecule force law and involves the truncation of the force law

range; in addition, a function of (ma/mb) is "determined" by finding

the value '~ " the function as (m _/m ) +~ 0. Morse's work apparently
involves the a griori assumption that uab ub 5 it 1s easily shown
from (4.7a) that ‘ab uba if and only if %oy = 1, for a#b ,
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appealing from an intuitive point of view, it must be emphasized
that %op is essentially a "free" parameter. In any eveht, the
Gross-Krook model given by (4.1), (4.2a,b), (4.7a,b) now reproduces
the partial momentum and energy collision integrals of the Boltzmamn
operator for the case of Maxwellian distribution functions, ¢ << 1 ,
and general central force laws, with the restrictions on the

distribution functions and ¢ removed for the Maxwell mcieciulie

force law; the usual conservation laws are consequently satisfied

~ automatically. The free parameter, o, » can be adjusted, if

desired, to bring the model's partial pressure and/or heat flow

collision integrals into closer agreement with those of the Boltzmann

operator.

From (3.60),(3.61)we see that for ¢ >> 1 and Maxwelllan
distribution functions, the partial momentum and energy collision
Integrals have the same formas (4.5a), (4.5b), respectively, with
the term (3/2)K(Tb—Ta) in (4.5b) replaced by ig%il-K(Tb—Ta) H
the collision frequencies are of course different for the two ranges
€ <<1l and e >> 1 (see (3.42a), (3.59a)). Hence, the results for
e >> 1 can be obtained directly from (4.7a,b), (4.8), simply by
multiplying the term involving (Tb-Ta) in (4.7b) by (n+4)/3,

and using (3.59a) for Vap

The partial pressure collision integral of the Boltzmann

operator is, for Maxwell molecules (cf. (3.78)), exactly
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1 A2<5)
[6(m cajcak)]ab vap(5 1 jl,{(m.o/m )% (ub-u ) +

A (5)
+ 2[1- FT)](”‘o/m ) p (ub J(ub -U,) +26Jk(u/m N K(i -T,) +

A (5 A2(5) mb
(4.10)
The corresponding integral of the Gross-Krook model is
[4(m 2%aj ak)] abEpa( ab Y- j\uab'ua)k jkNaK(T “Tap )~ P aJk] ’
or substituting u.. , Tap 5 Vap * (4.72,b),(4.8),
[8(mycyyeg) Ty = vapll/3) (2= )65, (m /m )20, (B 3,)2
+o (mb/m )2 P (u.D ).j(ub u )yt 26jk(u/’mo)NaK(Tb—Ta)-(l/aab)Pajkl .
(4,11}
In (4.10), (4.11) the collision frequency Vap 3 and hence ¢ s

now corresponds to the Maxwell molecule force law (see (3.72a)) .

Comparison of (4.10), (4.11) shows that the Gross-Krook result

contains no "cross" traceless pressure term, P 3
bjk

have been anticipated from the model (4.1) inasmuch as it contains

this could
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*
no tensorial-like parameter. The ratios of the terms involving
(ﬁo-ﬁa) » (Boltzmann:Gross-Krook) are of order (1/aab); the terms

involving (Tb-Ta) agree exactly. The ratio of the coefficients of
Pajk are (Boltzmann: Gross-Krook)

[2+(3A2/2A1)(mb/ma)](u/mo)aab N 0.89 Ao 5 Ty ~ m, (4.123)
Y 1.55 G s My << M (4.12b)
N 2(mb/ma)°‘ab s My >>m . (4,12¢)

We see from (4.12¢) that if we set @ = ma/2m.D for agreement of
the Pajk terms in (4.10), (4.11), for the case m, >>m, , then
the terms involving (%'aa) will be in disagreement by a factor
proportional to mb/ma << 1 . Purthermore, we see from (4.12pb,c)
that if we set 1.55 ¢ = 1 for agreement between the Pajk terms
for the case m, <<m , then the ratio of the Pb ik coefficlents
(Boltzmann: Gross-Krook) in [6(mbcbjcbk)]ba will be l.29(ma/'mb)<<l.
Hence, we see that the integrals [é(macajcak)]ab can be made to
agree falrly closely for the cases m, R My » My << m , but not for

m, >>m ; if we conslder both partial integrals, [G(macadcak)]ab

*Note that for the partial pressure collision integrals to
agree exactly the kinetic model would have to incorporate in addition
a tensor with at least five independent elements, corresponding to
the five independent elements of the partial pressure collision m
integrals. The Gross-Krook model is a degenerate form of Holway's
"ellipsoidal statistical model" which does exactly this.
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and [G(mbcbjcbk)]ba » then close agreement between the Gross-Krook
and Boltzmann results is only possible for m, %'mb . Inspection of
(4.10), (4.11), shows that if we set

oy = 2[1- 30,(5)/4A,(5)1 % 0.U5 , (a#b) , (4.13a)

then the integrals [G(macajcak)]ab agree exactly for the cases
(4.12a,b), apart from the missing ijk term in (4.11) and the
fact that the ratio of Pajk coefficients (Boltzmann: Gross-Krook)

is (0.40) for m, N m, » and (0.70) for m, << my .

Finally, we note that agreement between the self-partial
pressure collision integrals [6(macajcak)]aa can be achieved by

adjusting o the result is

ag ?

Gp = 4 (5)/38,(5) = 1.29 (4.130)

which agrees with the result Hamrellll obtained by considering a

binary system with one component a "trace species" (i.e. Nb/Na-f 0).
Alternately, (U4.13b) gives the discrepancy between the Gross-Krook

= ' =
and Boltzmann results if we set L 1, so that Vag = Vag -

The partial heat flow collision integral of the Boltzmann

operator is, for Maxwell molecules (ef. (3.82)), exactly

(63 myele, )] = vap Mou @), [v(my/m )2 (@-3,)% +
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+ Sy(m /m2)K(T, =T )+(5/2)K T_/m. 1+ N_u(i -0 ) [27( )2—-——Paik+
v /m K (T =T )+(5/2)K T /m I+ Nou(w-u, g2y my/m )=( o

a
P, P
+ —‘;—3‘4 + (1+(§-§I- ) (my /m ) )22 (my /)2 (/) =
Ta
- [2v(my/m )+ 2(my/m ) (=3+ A/A #3] (m/m )q, } (4.14)

where y = 2-A,(5)/A;(5) . The corresponding integral of the Gross-
Krook model is

(805 myeZe ) Ty, = Vi {0N/2) (8,0, [5K Tt my (B, 620 a0

o T , (1.Ta,0), (4.8),

or, substituting for u b “z;b

[8(3 myeaego) Ty = Vap Ngn (G-, ), [ (o /2) ((5/3) (2= Jta ) °
(/) (GG, P50, (m /K (T, =T, )+(5/2)K T,/m 1~ q, /a

apt
(4.15)
Comparison of (4.14), (4.15) shows that the Gross-Krook result
conta:lhs neither the "cross" heat flow term, Qpye » 1O the traceless
pressure terms. The ratio of the térms involving (ﬁb-ﬁa)k('&b-ﬁa)z ,
(Boltzmann: Gross-Krook) 1s of order (l/aib) 3 the ratio of the -
terms involving (ab'aa)k(Tb_Ta) is of order (1/aab) . The terms
involving ("ub-ﬁa)k'l‘a are identical. The ratios of the coefficients
of q A are (Boltzmann: Gross-Krook)
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A5(5) A5(5)
mo [(2- 7—5' :b + T)-3]+3} &aab

o

Y
0.76 Gops My v My

(4,16a)
gy + My << M,

ea -

(4.16b)

X 3(my,/m, Jagy » My >>my .
(4.16¢)

The set of fatios (4.16a,b,c) 1s similar to that for the comparison
of the partial pressure collision integrals, (4.12a,b,c), implying
an analogous conclusion. As can be seen, however, the ability of
the Gross-Krook model to imitate the results of the Boltzmann
operator decreases with ascendingvmoments; this is what one Would
expect for a fixed number of model parameters, and is typlcal of
kinetic models. Nevertheless, it is encouraging to note from the
similar sets of ratios (U312a,b,c) and (4.16a,b,c) that when LTS
is adjusted for maximum agreement of the pressure integrals, the
heat flow integrals are simultaneously brought into closer

agreement.

If the value of % given by (M§13a) is used, the partial
heat flow collision integral of the Gross-Krook model agrees
closely with that of the Boltzmann operator for cases (U§ﬁ6a,b),
apart from the missing terms. If a , &lven by (4:13b) is

1 2
substituted into the Gross-KroQk integral, [s(é--macacak)]aa , the

ratio of the q, coefficlents is (2/3).

Summarizing, we see that the Gross-Krook model's partial
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pressure collision integral, [5'(macadc ak)] ap » ¢an be made to
agree fairly well with that of the Boltzmann operator for the cases
m, x m, and m, << m, » but not for the case m, >>m, . For the
case where the "cross" traceless pressure term, ijk » 1s negligible,
or when Na/Nb + 0 (see (4.10)), the agreement is excellent. (An
example which satisfies both of these conditions is the calculation
of the electron-neutral collision integrals in a weakliy ionized
gas). Similar observations apply to the model's partial heat flow
collision integral with Aok replacing Pb ik ;s the heat flow
integral suffers an additional discrepancy in that it does not
contain traceless pressure terms, P ajk ° Pb ik ° as does the integral
of the Boltzmann operator. Finally, we note that for the cases |
m, i m, and m, << my , the aforementioned agreement between
integrals is affected only slightly by identifying "a'.b s the

model's collision frequency, with Vap the actual collision

frequency, i.e. setting %ob equal to unity.

4,2 The Sirovich Model

The Sirovich model19 extended to a multicomponent systém is

- ' (O) (O) > o
(GFa/Gt)coll. - _vaa<Fa-Fa )"(Fa /pa‘) g {Aabca (ua-u'b) +

+ (1-205/380) xgp (-5, )%+(3/2)€, (T T )T} (4.17)

2

éo) and a, are glven by (4.30), (4.2a), and where Vag
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(the model's self-collision frequency), & ab? Xap? and Eab are

assumed to be velocity-independent. The first term in (4.17) is

Just the Krook model for a simple gas, while the remaining terms
are cross-collision terms reflecting the differences in species'

flow velocities and temperatures.

As in the case of the Gross-Krook model, the Sirovich model
automatically conserves the species' mass

m

‘ 2 a 3 .2
[6(ma)]ab My aa(Na_Na)— 5; (Na- §'_§'§'aa)[xab(u _ub) +
4

+(3/2)g 4 (-1 )] = 0 . (4.18)

Following the same procedure as in the Gross-Krook model analysis,
we shall require the model (4.17) to reproduce the partial momentum
and energy collision integrals of the Boltzmann operator for the
case where the species' distribution functions are Maxwellian for

e << 1 (general central force laws) and for e >> 1 (general inverse
power force laws); again, the restrictions on the distribution
functions and ¢ will be removed for the Maxwell molecule force law.
The requirements for conservation of total momentum and energy will

then be satisfied automatically.

The partial momentum and energy collisicn integrals of the
Sirovich mecdel are

> =+

[G(m ¢ )]ab ab(ub_ua) (4.19a)
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(85 mye2) Ly = 3 £ (T, by (85,2 (4.19p)

Equating (4.5a) to (4.19a), and (4.5b) to (4.19b), gives us

Aab = uN aVab (4.20a)
&b = 2(”/mo)NaK"ab (4.20b)
Xgp = (M /m N 2Vap (4.20¢)

where in obtaining (4.20b,c) we have made use of the fact that

(Eb-Ta) and (ﬁa—ab)2 are, in general, independent quantities.

As noted in the Gross-Krook model analysis, the results for

e >> 1, general inverse power force laws and Maxwellian distribution

functions, can easily be obtained from the results for e << 1 ;
the only change here is that §p 1s now given by (4.20b) times

(n+4)/3, and Veb in (4.20a,b,c) is now given by (3.59a).

The partial pressure collision integral of the Sirovich model

is
[8(m,esem0 ]y = 'véaPajKGab+(2/3>63k[(3/2)Eab(Tb‘Ta)‘“Xab(aa'ab)z]

= 'VéaPaJksab+ Jk[6(2 m,c )] ’ (4.21)

where the first term in (4.21) appears only in self-collisions,
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i.e. "a" = "p" . Substituting for Eap 2Xap (4.20b,c), we have

[8(m, 1000 Tap, = ~Vaa Pagicdan (27308, v ul (w/m,) (8,5, )2 +

+ (3K/m ) (T,-T)] . (4.22)

Comparison with the Boltzmann result (4.10) shows that the Sirovich
result (4.22) contains neither the "cross" traceless pressure tenn;
ijk » nor the term involving (ﬁb-aé)J(ab-ﬁé)k + The terms in
brackets) "[ ", in (4.22) are in very close agreement with the
corresponding terms in (4.10). What is striking is the fact that
the traceless pressure of species "a" , PaJk » appears in the
Potal pressure collision integral, §(m,c

2%aj Coe) = Z[G\m %03 Cac) oy 3
solely through self collisions (ef. first term in (4,22)); this of

course 1s a consequence of the fact that the species "a"
distribution function, Fa s appears in the Sirovich model for

(GFa/Gt)coll only in the self-collision term (the first term in

(4.17)). To see more clearly the implication of this we write the

equation for the species "a" traceless pressure (see (2.28d))

__J%l_.+ cee = é(macaJ ak) 3 jks(2 m,c )- Vaa Pajk ’ (4.23)

where we have summed (4.21) over all species "b" . Expression

(4.23) 1s exactly the result of the Krook model for a simple gas;

clearly, the Sirovich model is inadequate for the calculation of

traceless pressure for any system other than a simple gas.
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The adjustment of the self-partial ‘pressure collision integral
1s identlcal to that of the Gross-Krook model analysis

Vaa = [38,(5)/48, (5)]v, % O.TT5v (4.24)

which of course gives the discrepancy between the Sirovich and

Boltzmann results if we were to identify Véa with v

The partial heat flow collision integral of the Sirovich
model 1s

[5( macezlcak)]ab = ~Via Ygdap= (5K To/2m Ay, (B, -3),

~Via Uy bt (5K Ta/ana)[fs(fnacak)]ab . (4.25)

Comparison with-(4.15) shows that the Sirovich result (4.25) does

! . > > > > .2 i 4
not contain the terms involving (ub-ua)k(ub-ua) s (uo-—ua)k(Tb—Ta)
as does the Gross-Krook result. The comment regarding the P

ajk
term in the Sirovich pressure integral (4.22) holds here for the

Ay term. The equation for the species "a" heat flow is
(see (2.28e))

D.q
2ok gl 2 1,5
bt T er = 85 mycie,) Iy (3 P81t Pagi) $myeyy)

= “Vaalai* (l/pa)PaJk é Aab(ua'ub),j =
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= —y!

22 %" Pagi 2 (my/m vy, (=) (4.26)

This is essentially the simple Krook model result with the

additional term in (4,26) reflecting the difference in species

flow velocities.

4.3 Models Based Exclusively Upon Equivalence of
Collision Integrals

The forms of the Gross-Krook and Sirovich models are results
of detailed physical and mathematical considerations with a view
towards approximating the Boltzmann binary collision operator,
(2.21); the equivalence of collision integrals is more of a
Secondary concern in this respect. In this section we will
construct a kinetic model with the exclusive goal of reproducing
éxactly the partial collision integrals of the Boltzmann operator.
The philosophy we assume is that, since the model imitates exactly
the Boltzmann operator with regard to collision integrals, one can
expect the constructed collision term (6F/o“t)collc to be fairly
satisfactory in problems where the equation of moticn (2.20) is
solved directly for the distribution function (e.g. the propagation

of a longitudinal sound wave in a plasma).

Before proceding, we may note that the Sirovich model (4.17)
can be substantially improved, with regard to its partial pressure
and heat flow collision integrals, in a very simple manner; if we

replace the self-collision term in (4.17) by
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-y! (F —F(o)) P -

N (o)
aaa  a VapFgFy ) s (4.27)

z
b
then the partial momentum and energy collision integrals (4.19a,b)

are unchanged, and the first term in the partial pressure collision
integral (4.22) is replaced by

P

-véa ajkdab > - Véb Pajk = —(vab/aab)PaJk . (4.28)

In (4.27), (4.28), Véb 1s the revised model's collision frequency
between species "a" and ™" , taken as usual to be velocity-
independent; in (4.28), o = vab/“éb s as in the Gross-Krook
model analysls. We note that the replacement indicated in (4.27)
amounts to replacing the self-collision frequency Véa by the

fotal collision frequency for species "a" , = Véb .
b

The comparison of the Pajk
collision integrals (Boltzmann: revised Sirovich model) is then

terms In the partial pressure

identical to that made in the Gross-Krook model, (4.12a,b,c).
However, because the "free'" parameter %, occurs in the revised
model's pressure integral only through the term (4.28), as
contrasted with the Gross-Krook result (4,11) where @, appears
in terms involving (Gﬁ_ﬁa) as well as PaJk s the revised
model's result agrees equally "well" (keeping in mind the missing
terms) with the Boltzmann result for all three mass ratios:

ma/mb N1 s m.a/mb << 1, n%/mb >> 1 . Of course, if a is

ab
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adjusted fqr agreement of the Pajk erms in ES(m %23 ak)] for

the case m << My then the ratio of ijk coefficients in

[é(mbcbjcbk)]ba is of the order m /mb <<1, just as in the case of
the Gross-Krook model, ‘

The revision (4.27) results in the first term in the partial
heat flow collision integral (4.25) being replaced by

~aalak®ap 7 aplak = ~Cay/ap)%ik - (.29

The comparison of the Uy terms in the partial heat flow
collision integrals (Boltzmann: revised Sirovich model) is then
the same as that for the P_, terms in the partial pressure

ajk
collision integrals.

With a view towards reproducing exactly the four partial
collision integrals of the Boltzmann operator, for the most general
type of problem, we now suggest the following scheme. In analogy
to the Grad expansion of the distribution functions in Section 2.3,

we expand the partial collision term (SFafét)ab in three-

coll.,
dimensional Hermite polynomials with a contraction of the third

order tensor (see equation preceding (2.38))

(sF/s6),, = Féo)[ﬁ% X+ Xa? 21%ag* + ¥ o 1. (4.30)
coll.

As 1t stands there are a total of thirteen independent scalar
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parameters In the model (4.30); this is the minimum number required

for: conservation of species' mass (one required); equivalence
of partial momentum collision integrals (three required); equi-
valence of partial pressure collision Integrals, wﬁich includes
equivalence of partial energy collision integrals (six required);

and equivalence of partial heat flow collision integrals (three

required).

Now, for brevity of notation, let Mib M?E s ﬁﬁ denote,
respectively, the partial momentum, pressure, and heat flow
collision integrals of the Boltzmann operator (in a completely
general sense, with no qualifications as to diffusion Mach number,

force law, etc.). The parameters in (4.30) are then evaluated by

imposing the following "constraints" upon the model:

(1) conservation of species' mass:

— ; - ~m{0) b b
= S m (sF /8t), & =m /F, (x3°4+ x‘;j 21Cay)d
coll.

or 0= Xab+ (ai/Z)X?? s ai z 2K Té/ma 3 (4.31a)

(11) equivalence of partial momentum collision integrals:

]

b _ 4 (o) . »ab b 2 >
Mﬁ =m, fcak(GFa/at)ab av = my fFé cak(X? cai+ Y? cacai)dca
coll.

or M = p X%+ (5a2/2)¥] (4.31b)
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(1ii) equivalence of partial pressure collision integrals:

- - (o)
M?i = ma.fcajcak(éFa/ét)ab1 av my fF‘ c cak(Xab pq ap aq)dc s
coll.
b _ b, ,.2 b b, .
or M?k = pa[éjkxa + <aa/2)<aka§i + 2xa ; (4.31c)

(iv) equivalence of partial heat flow collision integrals:

N .
lvf(b = (m/2) fcicak(sFa/Gt)ab = (m,/2) fF(O) ak(Xab
coll.
ab 2 >
+ Yi cacai)d a ?
or @b = (5a§pa/“)[xle<lb+ ('7ai/2)Y;b] : .310)

Note that (iii) assures the equivalence of the partial energy

collision integrals. Solving (4.31la-d), we obtain

b _ b ,
x*° = -(1/2pgmii (4.32a)
X‘ib = (1/pa)['(7/2)1VI§Lab - (2/a§)r7riab] (4.320)
X5 = (Wb aing? (4.32¢)
2P = (Up,a2) /5028 - 10 (4.320)

Substituting (4.32a-d) into (4.30) gives us
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plo) b
<6i2>ab - a -5 FMD + (b zmail @L"& .

coll, a a

o |
aa

o) .
’ Fb = Fé ) ? Gé =Y o and Ta =T

= w(0)
We note that when Fa = Fa b?

all partial collision integrals of the Boltzmann operator vanish
(since the Boltzmarn operator itself vanishes for this case), so

that (SFa/at)ab as given by (4.33) also vanishes for this
coll.

case. For a simple gas, (4.33) becomes

(0) 2
SF ¢ c Mia c
a al 2 a ‘ ]
coll, a a

If we consider the Maxwell molecule force law in a completely

linearized problem where flow velocity and temperature differences,
traceless pressures, and heat flows are all first order quantities,

then we have from (3.72), (3.78);“(3.82), respectively,
Ngb = Navabu(ub-ua)i ' (4.35a)

P P
MY = Novgp (w/mo)[26, K(T, T 140, Us ok - 3.55(mym,) —%&1]

- (4.35b)




iO3

: KT Q.
=N v o 2 —2 (%Y 41 aliom s 22 Pi
M?b = NyvapHi 2 m (ub ua)i+l°9b'mb/mo’ op

(1.9 (m, /m_)2~3.94(m, /m )+3] 2
- [1.94(my/m,)"~3.94 (m /m }+3] 2=
a

(4.35¢)
As an example we consider the weakly ionized gas (see Section 5.2)

where "a" and "b" represent electrons and neutrals, respectively;
then ma/mb << 1, and Na/Nb + 0 . For this case, the total

collision tert, (QFa/Gt)coll' s can be approximated by

(GFa/Gt)ab » and (4.35a-c) become, respectively,
coll

vabpa(a’b—a’a)i (4,.36a)

Mib
K 4\
rfl? = vab[zsij . (T,~T,)-3.55 P,y ] (4.36b)

-

vopl 3 0, G805 a0 (4.36¢)

Substitution of (4.36a,b,c) into (4.33) then gives us

§F SF q c
a v ( (0) alq “ai
(_3500011. t)ab = Va'a {[2(ub-u )3¥2 pa] a2 -
coll. a
2 ~
P., c_.c d.3s C. ° _ .
-3.55 -2 LAl o0 B 2o ) (4.37)
a aa a aa
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4.4 Comparison of Models

In order to determine the models' parameters we have required
the Gross-Krook and Sirovich models to reprcduce the partial
momentum and energy collision integrals of the Boltzmamn operator
for the case where the species' distribution funztions are
Maxwellian for e << 1 (general central force laws), and e >> 1
(general inverse pcwer force laws); the restrictions on the
distribution functions and e were removed for the Maxwell molecule

interparticle force law. We have seen that no matter what the

parameters are, the partial pressure and heat flow collision

Integrals of the Boltzmann operatcr cannct be reproduced, even for
the "simple" Maxwell mclecule fcrce law. However, the Gross—Krook
model is a decidedly more accurate model in imitating the Boltzmann
results than is the Sirovich model; as a matter of fact, the
Sirovich model's partial traceless pressure integral was shown to

vanish when "a" # "b" , and to yield the simple Krook model result

when "a" = "b" t(see (4.21)). We shall show in Chapter V that,
under certain conditions, the Gress—-Krock mcdel is sufficient for
the calculation of traceless pressure and heat flow in the case of
a weakly ionized gas. Of course, we have seen that even the more
"accurate" of the two models, namely the Gross-Krook model, is in
serious disagreement with the Boltzmann operatcr in regard to the

partial pressure and heat flow collision integrals when m, o> my

The revised Sirovich mcdel is a substantial improvement over
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the Sirovich model but still does not reproduce the form of the
Boltzmann results as well as the Gross-Krook model does; however,
this revised model can also be shown to be adequate for a weakly
ionized gas, subject to certain restrictions.

The "equivalence" model, (4.33), of course, is able to
reproduce exactly all four partial collision integrals of the
Boltzmann operator for the most geheral problem (i.e. no
restrictions on the distribution functions, the force law, or ¢ );
consequently, its parameters are, in general, quite complex,
However, for linearized problems, particularly in the case of a

weakly ionized gas, the parameters are considerably s:l.rrpiified.

Finally, we should emphasize again that the validity of these
kinetic models as substitutes for the Boltzmann binary collision
operator can, to a large extent, be ascertained by their ability

to reproduce the partial collision integrals of that operator,



CHAPTER V

REDUCTION OF THE TRANSFER EQUATIONS -- CALCULATIONS
OF THE TRACELESS PRESSURES AND HEAT FLOWS

In this chapter we return to our theme of transfer or
transport phenomena. Up tc now we have been concerned with the
closed set of transfer equations (2.44a-e) for the thirteen moments

> > " " s
Ns’ U TS or pg » stk s dg ("closed" in the sense of the
footnote on page 23). As they stand, these equations are, in

general, untractable; we thus seek some means of simplification.

. One means, of course, is simply to ignore the traceless pressures

and heat flows, L.e. set By = O, 4, =0 ; this amounts to
assuming Maxwellian distribution functions, F, = Féo) (see (2.41)),
and leads to the closed set of five transfer equations for the five
moments Ns s Ug s T, or Py » 1.e. (2.44a-c) with stk =0 and
aé = 0. This set of equations, as noted in Chapter I, has been

considered by several authors for various force laws.

A less restrictive technique for simplifying the set of
transfer equations (2.4la-e) is to retain the traceless pressures
and heat flows in such a manner that they are expressible in terms
of the first five moments Ns s ﬁs , TS or pg - In this way the

set of thirteen transfer equations is reduced to a set of five

transfer equations involving the first five moments. The degree of

106
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difficulty involved in solving the system's transfer equations is
thus considerably reduced, while at the same time a wide class of
non-local equilibrium problems is admitted (i.e. the effects of
"viscosity", corresponding to the traceless pressures, and "thermal

conductivity", corresponding to the heat flows, are retained).

Of course, in order to express the higher order moments stk
and aé in terms of the first five moments and thereby obtain a

closed set of transfer equations in NS, ﬁs s T or Py » We must

s
be able to "solve" the equations for stk and‘as, (2.443,e). We

shall see 1n Section 5.1 that, subject to certain restrictions on
the spatial and time varlations of the macroscopic properties of
the gas mixture, the equations (2.44d,e) reduce to coupled
algebraic equations; their solution is then relatively straight-
forward. The resulting expressions for stk and as can be
substituted into the first five transfer equations (2.4l4a-c); the
complete set of 5r such equations (r = number of species) then
describes the gas mixture. Subject to further approximations
(e.g. a completely linearized system) this set can then be solved

for the first 5r moments, NS s ﬁs s Ts or pg .

In this chapter we shall calculate the traceless pressures

and heat flows for: (1) a weakly ionized gas, with arbitrary
inverse power interparticle force laws and a magnetic field of

arbitrary magnitude, and (2) a binary Maxwell molecule gas with

arbitrary mass and number density ratios. Then, in the last
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section we shall determine the traceless pressure for the entire
mixture in terms of the system's current density and flow velocity,

for a fully ionized gas. All of the calculations are for small

diffusion Mach number.

5.1 Reduction of the Traceless Pressure and Heat Flow

Fquations to Algebraic Expressions

It will be recalled that all of the calculations in Chapters
IT, I1I were for the case where the species' distribution functions

were "close" to their local equilibrium forms, the Maxwellian

. *
distributions, Féo) (see Section 2.4). For this case, of course,

the traceless pressures and heat flows, stk and a

in the rough sense expressed by (2.48) - (2.50). Keeping this in

s are''small"

mind, we see that the dominant terms on the left-hand sides of the

Traceless pressure and heat flow equations, (2.44d,e), are those

which do not involve stk or ES , With the possible exception

of the terms involving the magnetic field, B (since |B| could

conceivably become arbitrarily large). Let us now concentrate on
the remaining terms on the left-hand sides of (2.44d,e) which do
involve Py, and dg » bearing in mind that the right-hand sides
(i.e. the collision integrals) also contain terms involving stk
and aé s we wish to compare these two sets of terms. For this

¥ v
The Maxwell molecule calculations of Section 3.5 were of
course independent of the species' distribution functions.



purpose the stk terms on the right-hand side of (2.44d) may be
roughly viewed as being of the form

stk ferms on right-hand side of (2.44d4) ~ vsstk s (5.1a)

while the as terms on the right-hand side of (2.4l4e) may be
viewed as

-
q

o terms on right—hand side of (2.44e) ~ vsas N (5.1b)

where vy 1s the total collision frequency of species "s" ,

Vg = I vy (see (3.42) - (3.45)). We now limit our attention to
t

gas mixtures in which the spatial and time variations of all
macroscopic quantities are "small" in some sense; explicitly, we

assume that
1/t <<l and o /x << 1, (5.2)

-1

- = y n
where T4 = vy and Ly O(asrs) are, respectively, the "mean

time between collisions," and the "mean free path" of species "s"

the quantities t and X in (5.2) are, respectively, the
characteristic time and distance intervals for significant changes
In the macroscopic properties of the mixture. It should be noted

that what we are really assuming is that the species' distribution
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functions are "slowly" varying functions of (i,t), in the sense
given by (5.2).

Then from (5.1a,b), (5.2), we see that the terms on the left-
hand sides of (2.44d,e) which involve stk s as can be neglected
(except possibly for the terms involving ﬁ ) in comparison with
the éor?esponding terms on the right-hand sides, which are given
roﬁghly by (5.1la,b). Hence, to this level of approximation, the

traceless pressure and heat flow equations, (2.44d,e), reduce,

respectively, to the following coupled algebraic equations:

B
i T =
'2“’sc(’l§ €15h Fskn) + Psfsyr = S(MgCgyCqy )= 3 jk5(2 MsCq 2
(5.3)
aT
5¢% Ts_ gl
scoﬁgT X q ) t5K m, X, §(5 myeg sk)
-L 2.+ Py 8(mey,) " (5.4)
Py P54k ’ *
where w_, = (e/m.)|B| (5.5a)
ou u
- 8 sk 2 R=s
and ijk= 83(1{+—3Tj-—'§(sjkvus . (5.5b)

* ,
The results (5.3), (5.4) Cﬁn also be obtained using the so-
called "transport approximation'“? in which the assumptions (5.2)
are applled directly to the Boltzmann equation (2.20), (2.21).
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It will be noted from (5.3), (5.4), that we have retained the

traceless pressure and heat flow terms involving the magnetic field

B since, for sufficlently large I§| » the "cyclotron frequency"

for species "s" , stcl s can become comparable to or even

greater than the total collision frequency Vg (ef. (5.1a,b)).

Of course, there is, in general, a pair of analogous equations
for each species in the mixture. The solution of the complete set
of equations (i.e. all the stk R as » In terms of the number
densities, flow velocities, and temperatures of all the species)
is, in principle, straightforward, but, as might be expected, the
algebra involved becomes progressively worse as the number of

species increases.

5.2 The Weakly Ionized Gas with Arbitrary Cyclotron

Frequency and General Interparticle Force Law

In this section we consider a weakly ionized macroscoplely
neutral gas, in which the electrons and positive ions are trace
species, with the electrons possessing a sufficiently high
temperature so that the electron-neutral collision frequency is
much larger than either the electron-electron or electron-ion

collision frequencies. That is,

o - * )
2N, /N N NJ/N << 1 (5.6)

A typical ratio, for Vep, COrresponding to hard sphere force

/g™ OL0M /N ) (3000/7 )%} 5 see (3.04).

law, is (v__+v
2 ( ee ‘el
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so that Vee * Vei <% Ven (5.7
where "e" , "i" | ™i" represent, respectively, electrons,
positive lons, neutrals, and where "Z" is the charge number of
the positive ionsc* We wish to calculate the electron traceless
pressure tensor and heat flow vector. From (5.7) we see that the
total electron collision integrals may be approximated by the
partial electron-neutral (en) collision integrals (see (3.42) -
(3.45)) ,

/

(6Q) ~ (8Q), - (5.8)

Furthermore, from (5.6) we have

Vre® Vi <% Y (5.9)

so that the right-hand sides of the neutral species' traceless

pressure and heat flow equations, (5.3), (5.4), can be approximated

%%
by the partial neutral-neutral (mn) collision integrals,

*
The "n" used here is of course not to be confused with the

n" associated with inverse power interparticle force laws,
n = -4/(p-1) . (See (3.53a-4d)).

%% )
Note that we are not assuming (6Q)n %(SQ)nn s> Since this is

obviously not true for the total momentum and energy collision
integrals.

1}
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d(nhcnjcnk) 3 jk6(2 m.c, ) " [G(Hhan nk - % ij[d(%— mnci)]

nn
= EG(mncnjcnk)]nn (5.10a)
8(z mncncnk) (2 Pt Papic) 8cny) ¥ (8 mncncnk)]nn -
} '51;1' 3 ppdyct )[d(mncni

- 1 2
= [6(-2— nhcncnk)]nn . (5,10b)

Then, to first order in stk/ps,as/asps, € (cf. (2.49),(2.50)),

we have from (3.42)-(3.45), (5.3), (5.4),(5.8) and (5.10a,b),

t o lp 3, (@7
2“"c(€3J:!. eik) pefejk - "\’en{’o:L Pejk 2 (3 tz )pn Pn,jk}
(5.11)
pf . = -(3/b)(1-22))y P (5.12)
n'njk mm * nn njk :
p aT
P .5_. £ _& . _ _l_ - __ (2) -
“’c(a3x 9 )k * 2 K m, 8%, Ven{bz ek 'p ( +l+2z ) 9k

5K (pg/my) (i M (1422) (-1 )= (2/2) (m /m )T 1)

(5.13)

(5/2) (K, /m )aT, /ox, = ~(1/2) (122w q_ (5.14)
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where b, = 2/3(1-2(2)) (5.15a)

[
1}

o
]

5 = [52-(7/2)2' 170 (5.150)

and where all "z's" refer to (en) integrals unless otherwise

specified. Finally, we have assumed a magnetic field in the §3-
direction, B = 853 , with B =|B| arbitrary; w, 1s glven by

(we have suppressed the species subscript "e"), w, = (;e/me)B ,

e >0 , where e 1s the magnitude of the electron's charge. In

obtaining the right-hand sides of (5.11), (5.13), we have assumed

that Te/me >> 'I‘n/mn » and have used the fact that m.e/mn << 1,

We see that, to this level of approximation, the traceless
pressure equations (5.11), (5.12), are completely decoupled from
the heat flow equations (5.13), (5.14), We first solve for the
electron traceless pressure tensor. We have from (5.11), (5.12)

the following equations for the five independent elements of %e :

"

=2a Popo* Pell=;"nof11 (5.16a)
N
20 Poyot Pepp = ooy (5.16b)
->
G(Pell' Peoo)* Pe12 = ~of10 (5.16c)
£ 6
=@ Fep3* Pe13 = oT13 (5.164)
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w13+ Pans = “Nofag (5.16e)
with the redundant equation
= ; (5.16f
Fe33 = of33 5.161)
where o = by (6 /vg) = [2/300-22) T /v, ) (5.17a)
N 2( + 2(2))

and where we have defined an "electron viscosity for small magnetic

fields,"

Ny = by(Pe/ven) = [2/30-2N) 1o v ) (5.17¢)

The solution of (5.16a~-e) is

Pe11 = -no(Pll+ 203‘12- 2a2F33)/(1+ 4o?) (5.18a)
N 4V

Paop = =N (fpo= 20f 1= 262 f‘ 3/ (1+ 4o) (5.18b)
n v n 2

Pe12 = -nO[f12+ a(f22— fll)]/(l+ 4o ) (5.18¢e)

" - ’\/ . 4V} 2

Pel3 = —no(f13+ af23)/(1+ a®) (5.184)

- > v 2 180
Pez3 = -no(f23— afl3)/(l+ o) | (5,18e)
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We note from (5.16f), (5.17b,c), that Pe33 is independent of

the magnetic field (i.e. independent of W, ) ; this simply

reflects the fact that the magnetic force (recall that B= B33)
on electrons moving in the 53-direction is zero so that the
momentum carried by such electrons across a surface in the 33-
direction, which is moving with the velocity ﬁe s 1s not altered
by the presence of the magnetic field, ﬁ = B§3 s which in turn
means that Pe33 s @ measure of such momentum transport, is

unchanged.

For small magnetic fields, we have from (5.18a-e)

Pag > ofp 2 lal =112/302®) 1w ) > 0. (5.19)

For an infinitely large magnetic field, we obtain

-5 0O ©0
O 0 1

The result (5.20) is not at all surprising from a mathematical view
point; it could have been obtained with only a knowledge of the

result (5.16f). Since the magnetic fleld B = 333 is so strong
it produces the only preferred direction in the system, which in

turn implies rotational symmetry about the 33-direction; hence,
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s H I3
we immediately infer that Pell = Pe22 and since Pe is always

= =% =L ¥
traceless, we find that Pell = Pe22 ==5 Pe33 5 ”of33 s from

(5.16f). Furthermore, because of the rotational symmetry about
the 33-direction, we see that the distribution function Fe(§,3,t)

must be "isotropic" in the velocity 31v1+ géVé » that is,

o= Fe(i,vi + vg > V35 t) 5 from this we immediately conclude that

2 2
el + Cens Ce3»

From the definition for Pejk s (2.13), we then see that

N *
U = U, =0 (see (2.5)), so that F, = Fé(x, c t).
Pejk =0 for j # k , since the integrands involving ¢g; and

c are both odd.

e2

We see from (5.19), (5.20) that the magnetic field has a

pronounced effect upon the electron traceless pressure tensor, with

>
P~ becoming diagonal for very large magnetic fields.

e

The results (5.18a-e) simplify for the case where the neutrals

are in local equilibrium, Fn = Féo) . The neutral traceless

v
pressure then vanishes identically, and the f functions in

Jk
(5.18a-e) become

Iy
fjk = f.e;jk ’ n n s (5.21)

*
This type of distribution function and the form of (5.20)
appear as lowest order results for the ions in the Chew-Goldberger-

Lowu6 magnetohydrodynamic formulation of a fully ionized,

> > >
collisionless gas subjected to a strong Lorentz force, es(E+VXB) .
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so that, for example,
- - _ 5.2 2 - nlo)
Pell = no(fe11+ 2afel2 2a fe33)/(1+4a ) Fn =F . (5.22)

The results (5.21), (5.22), are generally valid even when Fn is

not Maxwellian since the ratio of the fnjk
to the féjk coefficlent is, for inverse power interparticle force

coefficient in (5.17b)

laws, (fst = KSt/rp » n=-b/(p-1) , -4 <n <0), roughly

m T v >
e T ‘en (1-n)/2 y(n=1}/2 ‘ Y
5;- Tz— S (me/mn) (Te/Tn) <<1 for Té " Tn ,

(5.23)
so that the fhjk term in (5.17b) is generally negligible. In
obtaining (5.23) we have used the expression for Vet for e << 1,
(3.94), and have assumed the same force law (i.e. same n) for
electron-neutral and neutral-neutral collisions ('"hard spheres,"
for example), where the interparticle force law constant can be
written as Ket = msthét , with Két independent of the masses Mg s
mt° (This latter assumption is of course not valid for the Coulomb
force law, but one would hardly ascribe this force law to electron-

*
neutral or neutral-neutral collisions. ) We see from (5.23) that

*
For other force laws where « does not involve the masses
(5.23) is replaced by (m /rsnt)l/2 (v s yn-172

ms, mt’ ° p J e’ "n e’ n

o



]
]
O

the fnjk term in (5.17b) is simply a "correction" term accounting

for the finite mass, and hence, the finite mobility of the neutrals.

Expression (5.22) is the result we would obtain for Maxwell
molecules using the Gross-Krook model cf Section 4.1 if, in that
model's partial pressure collision integral, (4.11), we consider
terms to first order in e and set Ay = Ven/\’;:-n = by (compare
the traceless form of (4.11) with (5.11), with Pnjk
(5.11)).  Furthermore, (5.22) is the exact result for Maxwell

=0 1in

molecules using the revised Sirovich model of Section 4.3, with
.ﬁ: 1 = ( R
Aoy F \’en/ven bl (compare the traceless form of (4.22), (4.28)

with (5.11), with Pojg = 0 in (5.11)).

Before proceding to the calculation of the electron heat flow
vector we examine the influence of the interparticle force laws
upon ?e - Referring to the general results (5.17a,b,c), (5.18a-e),

we see that this influence enters explicitly through the terms
- (2) 1. (2,4, (2) e A
by = 2/3(1-2*°") and 203+ 27°)/(1=z ") . (5.24)

From Appendix A we have for inverse power interparticle force laws,

fst= Kst/r'p s

(@)

2 =1-(n+6)A2<p)/5Al(p) , n=-=l/(p-1) ,

o that by = 10A,(p)/3(n+6)A,(p) = 0(1) for -4 <n <0 (5.25)
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where we have used the fact that Ag(p) = 0(1) . For hard spheres
(n=0) and Maxwell molecules (n= -1) we find, respectively,

b1 = 5/6, bl = 0,65 . Similarly we find

2123 -(2+6)8,(p) /A, ()]
(f+6)A, (p)/A; ()

2G +2%)/01-22)) - = 0(1) (5.26)

for n=0 or-1,n=0 or-l,where n,p refer to the

neutral-neutral force law. Hence, from (5.17a,b,c), (5.18a—e), and

(5.25), (5.26), we see that the interparticle force laws enter the

result for ?; essentially through the collision frequencies,

Vv \Y °
en > mn

. Returning to the heat flow equations (5.13), (5.14), we see

that the electron heat flow equation can be written as

(I + a'g3x?)° Ei = =) ﬁ‘/ (5.27)

-~

<« . ‘i*__—fw»—y.'_ -'»+++ 4
where I 1is the unit dyadic =298y a2a2 a3a3 s an

@' = Dy(uy/vy) = [1452-(7/2)2' T /v, ) (5.28a)
7T = o1 T2z 2 41/0)/ 12N g/ )2 (T T G /o) YT+

+2(mv g, /) (G -84 2 ) -1 /T )4 (2/2) (m /m )], (5.280)
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and where we have defined an "electron thermal conductivity for

small magnetic fields,"

Ao = (5b,/2) (Kpy/meve ) = (5/2)[1452-(7/2)2' T (Kp /m_v_ ) . (5.28c)

e en € e en

The solution of (5.27) is simply

> & > €& =] nJ «> ~
Qg = =M (I + a'a3x I) *VD=-x° VT (5.29)
where
Ay g O
&
. Sy A O (5.29a)
i 0 0 AO_J

and A S Ao/(l+a'2) s Ay = Aoa'/(l+a'2)

y = (5.290)

The notation AN o Mg will be explaned shortly.

We note from (5.29), (5.29a,b), that for small magnetic fields

we have
~ -1 )
aé + A VT as la'| = |[1452-(7/2)z"] (wc/ven)l > 0, (5.30)

while for infinitely large magnetic fields
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ae+ -AO(VT)3§3 as |a'| > w (5.31)

so that ae is parallel or anti-parallel to the magnetic field,

> >
B = Ba3 » for this case.

\
When the neutrals are in local equilibrium, F_ = Féo’, the

neutral heat flow vector vanishes identically and (5.29) becomes

g, =X -{VTe+2<m§venA%><*%-ae>[<1+z<2>>(1-Tn/re)+<z/2><mn/me>1 ,

- w(0)
Fn B

(5.32)
Again, the result (5.32) 1s generally valid even when Fn is not
Maxwellian since the ratio of the VI, coefficient in (5.28b) to

the VTE coefficient is, for inverse power interparticle force

laws, roughly
2 (3‘n)/2 (n-1)/2
(me/mn) (Tn/Te)(ven/vm) v (m/m) (T,/T,) <l L.
3/2 (n=1)/2 e e n
or v (m/m)” (T <1
(5.33)

depending upon whether or not Kt involves the masses Mys My
(see the discussion following (5.23)); hence, the v T, term in

(5.28b) is generally negligible.

The result (5.32) can also be obtained (for Maxwell molecules)



123

using the Gross-Krook model if, in that model, we set
Oy = Ven/“én = b2 (compare (5.13) with an =0, 1+z<2)$ 1.03 ,
z =0, with (4.15) minus (5/2)(KTe/me) times (4.5a)).

When Té i T > (5.32) becomes
q. = “X-{vT + %nﬁ u)l, T AT 4
Qo = AoVt & (-u b, T v T . (5.34)

Finally, for Maxwell molecules, z = O , and (5.34) becomes

<> ny
aé =-AVI, , T ~T , Mawwell molecules . (5.35)

This is the exact result obtained from the revised Sirovich model
if, in that model, aén = ven/vén = b, (compare (5.13) with the

revised result (4.25), (4.29) minus (5/2)(KIé/me) times (4.5a)).

Let us return to the general result (5.29) and explain the

notation used in (5.29a,b); expanding (5.29) into its component
parts, we have

~ ~S ~/ ~/ ~/
Qg = Ao (TP g804) [(VD) 3+ (0 4, T-0 [ ()3 -(TD) 3] . (5.36)

The first term in (5.36) is in the direction of the magnetic field

L]

§ = 833 5 we see that for the same number densities, flow
velocities, and temperatures, this component of ae is Independent
of the B field (i.e. independent of w,). This sinply reflects
the fact that the magnetic force on electrons moving in the
direction of B 1is zero so that the random kinetic energy carried
by such electrons across a surface in the direction of E is

5
unchanged by the presence of the B field, which in turn implies
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that qe3 » Which 1s a measure of such energy transport, is

>
unchanged. The second term in (5.36) is normal to the B field 5

from (5.29b) we see that it is reduced for increasing magnetic
fields. In this case the non-zero magnetic force on electrons
moving perpendicular to the E field tends to reduce their
transport of random kinetic energy across a surface normal to the
B field, so that Iqe_L! is reduced by the presence of a

magnetic field. The last term in (5.36) is normal to both (Sf) and

>

>
B = Ba3 5 This is the so-called "Hall" heat flow, which of course

vanishes as |a'] =|b2(wc/ven)| +0 .,

As with the case of the electron traceless pressure tensor,
it can easily be shown that the interparticle force laws (en » N
collisions) enter the result for ae s (5.28a-c), (5.29), (5.29a,b),
essentially through the collision frequencies, Ven and Y
with the exception that the dominant term in the brackets, "[ 1" ,

in (5.28b), (z/2)(mn/me) » vanishes for the Maxwell molecule

interparticle force law (i.e. z = 0).

The results (5.22), (5.32), can be substituted into the first
five transfer equations for the electron species whose variables
Né, ﬁé, Té or p, s can then, in principle, be solved in terms
of the neutral species' moments Nn’ an s Tn or D, s with ign

and an given by (5.12), (5.14), respectively; alternately, one

can work with the complete set of ten transfer equations (i.e. five

»
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for electrons and five for neutrals) in an attempt to solve for

the ten moments N_ , ﬁs » Ty or pg, with "s" =e, n .

S

5.3 The Binary Maxwell Molecule System

In this section we shall consider a two-species gas in which
the particles obey the Maxwell molecule interparticle force law.
The calculations are made to first order in ¢ , assuming a small
magnetic field (i.e. Imsc[, "s" =1, 2, is small compared to
the dominant collision frequency). The essential difference from
the calculations of the previous section is that here the species'

traceless pressure equations are directly coupled, as are the

species' heat flow equations. After obtaining the general results

for species "1", we shall specialize to the following cases:

(1) m vm,, (1) m << my , (1i1) my >>m, .

To first order in e , the traceless pressure equation for

species "s" 1is, for Maxwell molecules, from (3.78), (3.79), (5.3),

P
. tik 1,2 1.55
pf .. = I (m/m)p_v_ {045 =& _ 2= —==)P_.. } , s=1,2 .
s"sjk t=1,2 £’ 0o s st Py NS m, M sjk

(5.37) \
To the same order, the species "s" heat flow equation is, from

(3.82), (3:72), (5.4),

§-K PS aTs = b {4.84(m_/m )2( K/m )(T =T )(u_,-u_,) +
2 ﬁ;'ﬁii'_ - =1 2vst < OR/my ) (e gh/my ) (L =T ) (upy ~u
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) 3 mo R

>

~1.94(m,_/m )3( /0. Q. +(m, /m \2(1 94 TE-+ TQ g .}
7T\ /My )7 e gy Qg im /m ) (L m 3 m -3.9 sk

s =1,2 .

(5.38)
The solution of (5.37) is, for Species ",

_ : o , 2
Pljk = -(l/Dvll){[0-775&v22/v12)—(N1/N2)(ml/mo) (1455+2m2/m1)]plf1j£'
+ 0.15(ny/m ) (01 /000,05, ) (5.39)

5

where D

m

{00.6040. 775 (w/m ) (2+1.55m,/m; ) (v 5/v1 1)1 (v, 0/ v ) +

+1_55+1°2o(m1/m2)+3.lO[2+(m1/m2)+(m2Anl)](u/mo)(vl2/vll)h

(5.39a)
The solution of (5.38) is, for species "1",

Ay = =(1/D")[0.515(vy /v )+ (Ny /N, (my /)P (1.9 (my /m_) +
+3(m /my )-3.94) 1 {(5/2) (Kp /my v ) (3T /ox, ) +
2 3
+h. 8L (my/m ) (o K/m ) (T4 =T,) (U =y )+ (my/m ) (uyy=upy)

o[(_1694+3,48mo/m2)Pljk'1°9u(91/92)P23k]} -
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=(1.94/D" ) (my/m )3 (01/0)(5/2) (Kpy/myv ) (3T,/3%, ) +

+(ml/mo)3(N1/N2)Qﬁj-u2j)[(—1,94+3.M8mb/ml)P2jk—l.94(p2/p1)PljkB,

(5.40)

where D' = {[0.265(vy1/v;,)-0.515(my/m )70, ] (v, /v ) +

+ [(u/mo)zﬂlﬂg-o-515(m1/mo)291(vll/v12)-3e76(u/m0)3](N1/N2)}

(5.40a)
with @ = 3.94-1,9u(ms/m0)-3(mo/ms) , s=1,2 . (5.40p)

The solutions for species "2" are obtained from (5.39), (5.39a),
(5.40), (5.40a,b), by simply interchanging the species’ subscripts.
Obviously, the results obtained so far are extremely cumbersome ;
we shall now consider some limiting cases where a certain amount of

simplification is possible.

v

Case (i): my v, o,

Pljk = -[(0.688+1. 55v,5/v17)+(0. 60140, 688v12/\)11)N2V22/N1V12]

'(l/vll)[(O.877+O.775N2v22/va12)p1fljk+O‘ll2p2f23k]

(5.41)

apye = [N /N, )40.515(v,55/91 )L (0. 64540 43T v, 1 /v, ) (v,0/0, ) +
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+(0.51540,645v, 1/, ) (N /Np) T N K(T,=T, ) (g~ )

~[(0- 3940, 265, /v1.,) (9591, 7+(0. 51540, 39wy ) (N, )T -
"100.515(vy/v15)40. T5T(N, /N,) 1(5/2) (Kpy /iy 1 ) (3T /3%, ) +
+O.605(N1/N2)(Kp2/m2v12)(3T2/3xk)+0.125(u2j—ulj)[(2.58(v22/V12) +

+M,27(N1/N2))Pljk-(2.69+N2v22/va12)(Nl/N2)2P2jk]} D (5.42)

The species "2" quantities are obtained by interchanging the

subscripts "1" and "o" .

Case (ii): m <<m, ,

- ‘- » -1
Pljk = -[1.55+3,l(vl2/vll)+(O.6Ol+102vl2/vll)(p2v22/plv12)]

Ay = [14.5(p1/p,)+2.50(v,5/v15) 10(0.51540.265v, 1 /v, 5 )(

/v +

v )
2212
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’{[OoSlS(vzz/vl2)+3(ol/pz)][(5/2)(Kpl/mlvlz)(aTl/axk) +
+(u23-ulj)(lcSHPUK—L94(01/92)P2jk)J+H085(ol/02)(sz/mzvlz) °
(3T,/3%)} . (5.L44)

The species "2" quantities are obtained by interchanging the

subscripts "1" and "2" in the results of case (iii) below.

Case (iii): m >>m, ,

Pryk = ~LLe55my /my)+h vy o0 1+(240. 775my v,y /vy o) (Vv /Ny v )T
" (1/v17)[(my /ms)) (2455 /Ny 150D, £ 4, +0.58p,F) 1x3 (5.45)

Qe = [2:50(u55/v) 5 )+ BN, /N,) I (340.515my v, 1 /iyv ) (N /N, +
+(1.5440,265m) v) 1 /v, 5) (Vp/915) T iy N K(T,=T )ty -, ) =
-[(Oo515(v11/v12)+3m2/m1)(Nl/N2)+(O.265(v11/v12)+1.54m2/m1) y
(/9 ) THIO 515 (v /v, 4y N, 1(5/2) (Rpy /v ) (3T /0%, ) +

+1, 85(m2/ml)2(N1/N2) (Kp,/myv1 ) (8T2/8xk)+(m2/m1)2(ugj—ulj )
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] ) , \ 2
[(3. HBON /Ny )41 7995/ )Py gy (4 OBV /Ny vy o) (N )PP T

(5.46)
The species "2" quantities are obtained by interchanging the

subscripts "1" and "2" in the results of case (ii) above,

To continue the simplification, we consider the case where

m <<m, and N; =N, ; then, from cases (11) and (iii) we have
Pagic = =(1/911)00:53p) 1, #0.31(my /) (11 /950)P,fp 1 (5.472)
Posk = —(1/v5,)[1.29p,f, Jk+0.219(m1/m2)plfljk] (5.47b)
Q. = 208(m1/m2)(p2-p1)(qu-ulk)—(l/vll){2e05(Kp1/m1)(BTl/axk) +
5. 46(m, /m, Yo 1/v5,) (Kp,/m,) (8T 3%, )+ (upg=uy 4 ) [0 H75p1fy gyt

+1.25 (ml/m2)(\ill/v22)p2f23k] } (5.48a)

" {4, 85 (Kp,/my) (3T, /3% 5. bl (my /m)° (Kp, /m)(aT /%, ) +

+(ml/rr12)2(u23-uu)[8.66(v12/v22)pzfgjk-&?plfljk]} . (5.48p)
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If we further assume that Tl X T2 s then the first terms in
(5.48a,b) are second order terms in (Té- Tl)sk » and may be
neglected; for this case, if we write the Maxwell molecule
collision frequency as (see (3.72a))

2
Vst = 2ﬂAl(5)(Kst/u)l/ N, = 2ﬂAl(5)(mOKét)l/2Nt (5.49)

where «l. does not involve ms , m. , then (5.47a,b), (5.48a,b),

becone, respectively,

Pljk = —O.534(p1/vll)fljk (5.50a)
P2jk = -1029(p2/v22)f"2jk (5.50b)

4 = _{4,85(Kp2/m2v22)(3T2/axk)+(ml/m2)2(uzj-ulj) .

*
°[8°66(v12/v22)p2f23k—207plfljk]} 5 (5.51b)

where we have taken into account the ratios T2/'I‘l N1 s Nl/N2 =1,

*
Ir Kst 1s assumed to be independent of the masses, m.s > My

then the results (5.50a,b), (5.5la,b) still hold, except that the
(_2'7plfljk) term in (5.51b) can be dropped.
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m1/m2 << 1 . It is interesting to obserwve that (5.50b) and the
first term in (5.51b) are the results one would obtain for a simple
gas of Maxwell molecules (i.e. the same coefficients of viscosity
and thermal conductivity, respectively), while (5.50a) and the
first term in (5.51a) are reduced from their simple gas counter-
parts by a factor of approximately 2;M° We thus see that, to this

level of approximation, the heavy species ("2") behaves very much

like a simple gas, while the light species ("1") is considerably

Influenced by the presence of the heavy species.
Finally, for case (ii), m <<m, , and Nl/N2 -0, we
obtain from (5.43), (5.44), respectively,
(5.52)
Ay = u°8“(m1/m2)NlK(T2'T1)(u2k'u1k)'(l/vl2>{2°5(Kp1/m1)<3T1/axk) +
41*9,L14(v12/v22)(pl/‘p;_,)(sz/mg)(3T2/’axk)+(u‘,/_\J-ulJ)[-—o.,995plf‘l‘jk +

+lo90(p1/p2)(\)12/\)22)p2f2jk]} © (5053)

These results agree essentially with the results of Section 5.2
for the weakly ionized gas, with "1" denoting electrons and "2"
denoting neutrals, if the interparticle force laws in those results

are taken to be that of Maxwell molecules and the limit [wc/venie“o
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1s taken. There 1s, however, a slight difference; the terms
involving fljk s fzjk in (5.53) are not present in the
corresponding result of Section 5.2, since in that calculation

terms proportional to eszjk were discarded at the outset.

5.4 The Fully Ionized Gas

Up to now we have concerned ourselves with the properties of

individual species (e.g. species traceless pressure tensors,

species heat flow vectors); there are situations where one is

concerned with the properties of the complete system. This is

especially true in the field of magnetohydrodynamics. An important

exanmple is the study of the equation of motion for the system flow
velocity (i.e. the system momentum equation); by summing the
species' conservation of mass equation (2.44a) and the species'
momentum equation (2.44b) over all species, and performinghcertain

algebraic manipulations, the following system momentum eguation
2

. aP.
i X i

5> >
+ pchEk+(JxB)k+ka (5.54)

where p = I p (system mass density) (5.54a)
s

Q=3 pSGS/p (system flow velocity) (5.54pb)
s

+sE ﬁs— 4 (diffusion velocity of species "s") (5.54c)
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p = g Py (system scalar pressure) (5.54d)
Pik = g Psik (system traceless pressure) (5.54e)
Pepy = g e N, (system charge density) (5.54f)
3 z i Nsesﬁé (system current density) (5.54g)
gg =5+ UV (system hydrodynamic differential (5.54h)

operator).

If we consider only small differences in species flow

velocitles, and hence small diffusion velocities, the first term in

(5.54) may be discarded and we obtain the linearized system

morentum equation

D@k - 3P aPik

P T T 3% - 3%,

+ oy Bt (TXB)+ oG, . (5.55)

Let us now consider a fully ionized gas (i.e. two specles, electrons

and positive ions with a common charge number). The question
arises as to what expression to use for the total traceless
pressure tensor, Pik s this in turn leads to the problem of what

sort of "viscosity coefficient" to use in (5.55). Should we use

some simple-gas lilke viscosity which is dominated by the properties
of the electrons, or by the properties of the ions (as suggested

by Lymanu7), or is the viscosity ccefficient of such a system in



135

reality more complex in form. The purpose of the ensuing

calculations is to answer this question.

Assuming a negligibly small magnetic field, we have to first

order in e s stk/ps’ Eo/aspS » the following eguations for the

o)

electron and icn traceless pressures,respectively (see (3.43),

2.0, (5.3)),
Pelejic = L (Yee/2MVeetVe1Ve1 Pagi=(Ye1=2) (9e/p1 Vs Py gy (5.56)
Pyfygpe = ~L0v33/2)v33%2(0 /01 gy PByy Ly =(4/5)=(6/5) (T, /T )] -
*(my/my) Vg, Py (5.57)
where v . = (3/5)A5°(2)/a5%(2) . (5.58)

In obtaining the right-hand sides of (5.56), (5.57), we have

assumed Té/me >> Ti/mi » and have used the fact that me/mi << 1,

The solution of (5.56), (5.57) is
P = =Lty v /29 o T B +(2=y ) (24v, . pyvy 1 /20 v )L
ejk Tei Yee'ee’“Vei’Ve1” ‘Pelegk“Ve1’'<TV11P1V11/%PeVet

" Pyfygp! (5.59)
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_ S
Pigic = L@H4409944/200061)vey 17 0y /o) oy Ty gy +

+2(me/my )L (2/5)4(3/5) (T,/T ) ~(x /2)] -

*{y

/av Vo r

YeeYes” “Vei e eJk} ) (5.60)

T
ei
Then taking into account the following collision frequency ratios
(see (3.94))

Vy1/Vep = V2 Bme/m) 2 m) Y2 2) 8t o) (5.61a)
Vee Vot = («?‘Né/zzNi)Aie(z)/Aiigz) » (Z = ion charge number) ,

|  (5.61b)
we have for the total (system) traceless pressure tensor
ij = Péjk+ Pijk = ‘(“eféjk+"1fijk) (5.62)
where ng 2 [y oy +(vee/2) (vee/vey) T 0 /v, ) (5.62a)

Ny = [24(1g3/2)(p3/00) (v13/96) T oy /0 ) (By/voy) - (5.620)

In obtalning (5.62), (5.62a,b), we have ignored the effects of the

ratios Aii(2)/A§i(2) , Aie(Z)/Aii(E) . The dimensionless cross

sections Ait(2) for a two-temperature ionized gas have not, to
the author's knowledge, been rigorously calculated. They are

usually expressed as Ait(2) = 2n(9ND) , where ND is the number of
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particles in a "Debye sphere" whose radius, ry o, is taken as the
finite upper 1imit in the integration over the impact parameter
(see (3.10 )) ; however, when the electrons and ions have different
temperatures, the form for Iy is highly ambiguous (see refereﬁces
[22], [48]). Nevertheless, for the purpose of the ensuing
comparisons, we can safely take Aii(2)/A§1(2) , Aie(Z)/Aii(2) to
be of order unity in view of the logarithmic dependence of Ait(Q} .

Furthermore, Lyman48 shows that

Yo = (/5)855(2)/83%(2) = (3/5)(2-L/amn ) (5.63)

where ASt s the ratio of the Debye radius to the impact parameter
for 90° scattering, is sufficiently large for a broad class bf

problems so that (5.63) becomes

Yo = 0(1) . (5.64)

From the results (5.61la,b), (5.62a,b), and (5.64) we have for the

“"viscosity coefficients" Ne » Ny >

3
il

e = [0 b /v ) (5.65a)

U REEICN B eI (5.650)
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Returning to our result (5.62), we wish to express ij

terms of the system's flow velocity, U . We have from (5.54b),

in

(5.5U4g), respectively,

meNeae'F miNiai = (meNe+ miNi)ﬁ (5.66a)

]
iy

> -5
+ -
-eN eue ZeN, u

4G (5.66b)

Solving (5.66a,b) for ﬁe s +ui » We obtain the exact expressions

>
u
e

[ (mg#my Ny /N, )= (my /2N )31/ (m_tm, /2) (5.67a)

Uy = [y m NN, ) (1 2)0 (/2N T/ (m by /2) (5.670)

Substituting (5.67a,b) into (5.62), and using the results (5.65a,b)

as an accurate indication of the relative magnitudes of Ne » Ny »
we obtain
P, = =(n_+n,)f -'{(ZN—i--l)f +u, = (N, /N.) +
Jk T TVe™M/ ke N, JeTy a1
+u = (NN )= 26, B V(NN ) ]-[== (J./eN ) +
ukaxj 17’ Bk T e Tl Wy e
3 yo 2 (3 ¥
+ axj (Jk/eNe/- -B-quk v (J/eNe).]} (5068)

#
It should be pointed out that Ne need nct necessarily equal
ZNi, even for macroscopic charge neutfality.
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u auk P 5
where fjk = a—x-i- + —a—i’;— 3 ijv ° WU . (5.68a)

In obtaining (5.68) we have assumed the following relations:

Pe << 0y (5.68p)
ngPe/ Wy << NeP3/Ng (5.68¢c)

34NN, 3NN, |
e | T | << NgPy | -3;;— | . (5.684)

The assumptions (5.68b-d) are, of course, self-consistent; they

are also sufficiently general to admlt a large class of realistic

problems.

The first term on the right-hand side of (5.68) is a traceless

stress term with (ne+ni) playlng the role of a "coefficient of

viscosity"; it is important to note that this viscosity is not

necessarily dominated by either the "electron viscosity," Ne » OF

the "lon viscosity," ny » since from (5.65a,b)we have

172 (Ti/Te)5/2 «l, (5.69a)

n = ngtng =n, , for (mi/me)

and n = ntng =, , for (mi/me)l/2 (Ti/Te>5/2 > 1. (5.69b)

The term in brackets, "{ }" , on the right-hand side of (5.68) is a
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"correction term," reflecting the difference in electron and ion

flow velocities since, if we set ﬁé = Ei = s then from (5.66b)
we see that this term vanishes. The total traceless pressure 1s

then

with Ne » Ny &lven by (5.62a,b), respectively; the result

(5.70), of course, also follows directly from (5.62) with ﬁe= ﬁi

= U . This is the result obtalned by Lyman. !



CHAPTER VI

CONCLUDING REMARKS

We have seen in Chapter II that, by employing the Grad
Thirteen moment expansion for the species' distribution functions,
we can construct a closed set of 13r transfer equations which
describe the gas mixture, where "r" 1is the number of species.
Because the expansion is relative to the species' fiow velocities
and temperatures, these transfer equations can be expected to
adequately describe systems whose species have arbitrarily large
differences in flow velocities and/or temperatures, in addition to

having non-Maxwellian distribution functions.

The partial collision integrals occurring in the transfer
équations have been calculated for general interparticle force
laws, for very small and very large diffusion Mach numbers, ¢ .
We have seen that even in these limiting ranges the integrals are
very cumbersome; considerable simplification is possible, however,
for systems such as weakly and fully ionized gases, and, of course,
for "Maxwell molecule" gases. We ncted in Chapter III that the
non-Maxwellian or "non-equilibrium" parts of the species'’
distribution functions have considerably less influence on the
partial collision integrals for the case of large e as compared

to the case of small ¢ .

141
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In Chapter IV we analyzed various simplified kinetic models
and discussed thelr ability to imitate the Boltzmann binary
collision operator. In particular, we found the results of the
Gross-Krock and Sirovich models to be in serious disagreement,
both in form and magnitude, with the partial pressure and heat
flow collision integrals of the Boltzmann operator. A model based
upon a Grad-like expansion of the collisiorn term (6F/5t)co;;isions’

which reproduces the partial collision integrals of the Boltzmamn

operator exactly, was shown to be a feasible working model for

certain linearized systems.

We demonstrated in Chapter V that, for "slowly varying"
systems, the traceless pressure and heat flow transfer equations
could be approximated by algebraic equations whose solutions, in
terms of the first 5r moments (number densities, flow velocities,
temperatures), are relatively straightforward. With these
soluticns the system is then described by a closed set of Sr
transfer equations, while the effects of viscosity, corresponding
to traceless pressure, and thermal conductivity, corresponding to

heat fiow, are retained.

In our calculations of traceless pressures and heat flows a
number of interesting results were obtained. We saw in the case of
a weakly ionized gas that a magnetic field has a striking effect
upon the electron's traceless pressure tensor and heat flow vector,

>

-
with P, becoming dlagonal and ae "aligning" itself with B for
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infinitely large |B

. In the Maxwell molecule gas calculations

it was demonstrated that the heavy species tends to behave like a

simple gas (at least with regard to its traceless pressure and

heat flow), while the light species is decidedly influenced by the
presence of the heavy species. Finally, we observed that the
mixture's coefficient of viscosity for a fully ionized gas can be
dominated by either the electron cr the ions, depending upon the

ratios of the masses and temperatures.
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APPENDIX A

INTEGRALS USED IN THE CALCULATION OF
THE COLLISION INTEGRALS

- A.1 General Integrals

Consider the arbitrary vector variable
§=§ixi , (1=1,2,3),

and its coordinate system, Figure 3,

X

A3

>
X

l
Xz | X|

Y

|

|
|
|
N l
< |

¢ \\J

%

FIG. 3 ARBITRARY VECTOR VARIABLE.

(A.1)

where é’i is the unit vector in the i-th direction. ILet F(x) be

any Rlemarn integrable function of x = |X| ; then,

®© © 27 7
SF(x)d% = SITF(X)QxyAxy0xy = 1 1 f F(x)x°sinedodedx =
-0 OO0 O

Yn s F(x)xzdx.
o

(A.2)
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Next, consider the integral

|l
i

[ PN (A.3)

where the 2n-th order tensor §2n is given by

»>2n n
x = I x5 5, n=1,2,3, 4 ..., . (A.3a)
p=1 "p
We claim that
_ Und" ® on+2
Ton = T35 D) éF(X)X ax (A1)

where the 2n~-th order tensor & 1is formed by taking the sum of

all distinct products of n Kronecker deltas, 61j s Which arise

on permutating the 2n subscripts il, 12, cee s i2n 3 each term

occurs once, €.g.

31 =z 51 1 (= Gij) » the Kronecker delta,
12

and 8 = § 5, 4+, 5 +6

i 1 314 1113 1giu 1 1u i i (= 613 kR ik Jz 12 jk) °

We prove the claim (A.4) by mathematical induction on n .

"

Step (1): n=1 , I, = JF(x)%°dx = fF(x)xide§ (1.e. 1, =1,1

1
here)., .

s
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. G(x) _ X4 () = L dG(x)
We note that %, % ax ' Then, letting F(x) = X o s we
have,
I, =7 M, ax = 28y gt = - s i 6
2 x dx 7J axi J axi

(integrating by parts in the dxjL integration and assuming ij

venishes at x, = # «). Hence,

[+ ]

> 2
5 -Gij SGdx = -lhrcsiJ é Gx"dx (using A.2)

=
It

3 ij .f x5 (integrating by parts and assuming Gx3

vanishes at x = 0, ») . Then, substituting F(x) =

|
&8

_ Un ® 4
12 =z 613 Jo' F(X),% dx

So that the claim (A.4) is proved for n =1 .

Step (11): We assume the claim (A.4) is true for some integer n .

Step (111): We must now show that (A.4) is true for n+l .

From (A.3)
_ - an+2 > +2n+l
I2(n+1) = I =7 Plx)x 6 = J Fx X% a
~>2n+2
where xootl . - Then, substituting F(x) = 1 d6(x) as in
x(3) X, X dx
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step (i)
X,
= 5 o dG 22n+l > aG yontl o>
Tonto =/ & X(g) &K =S 5 O

= G 9??;1dx (integrating by parts in the de

integration and assuming Gi%?;l vanishes at Xj =+ e ),

2n+1 1
2n+1 X on+l
Now, 3 +%n+l = —-i—- § I 6 2n
J3) k_i X dk T k=1, 9 *(3,k)
>2n+2
>2n X
where x7. = . Then,
(k) Xy %
12n+1 = Lot o
I = - - . . *
w2 =7 T oy S G R RN PLIPRRY
1 1
. Yy n+2

1-3°5... (2 D) é Gx dx

using the assumption of step (dii)

, where K?j ) 1s the 2n-th
3

order tensor &° which does not contain the subscripts '"j'" , "k" ,

Now,

i2n+l

z ij 3?j k) = 3n+l from the definition of & . Hence,
k=1 s
1

yrartl ® 2n+3 dG

e Atl n+2
8 & 13 ...(2n+1)(2n+3)£ X ax

= fG dx =
Donto 1:3:5e««(2n+l) °
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)~

(integrating by parts and assuming Gx2n+j vanishes at x = 0, =) , or

T

. ) ® . 2(n+1)+2
2(n+l) 1:3<5 «..[2(n+1)+1] é Fx

dx

so that (A.4) is true for n+l if it is true for some integer n .

This completes the proof.

A.2 The "z" Integrals

For inverse power interparticle force laws fst = K

/P,

st
2 <p <=, the collision cross sections are

s (g = 2n(kgy/W ™20, @), n= <b/(p-1) , -h<n<o

and 5 (g) = (16%/2)[2=(1+(-D /(1] , P , no O,
"hard spheres," where o is the sum of the radii of the colliding

particles.

The corresponding "Maxwell-averaged collision cross sections"

are

(1,3) ~y° 2J+348

220l = (Uvns e y*Ts N agy)dy , (ay =g) , so that
20823 < /ma (p) (k) a I(J+2m/2) , n#0 ,  (A.5a)

and 2%99) = /r Plo-(1+(-1)Y/ (D) I0(I42) , n e O

5

"hard spheres." (A.5b)
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We then have
z = 1-2/5)(2122) 211 o _(1/5) (1) (A.6a)
z'= 1-(4/35)[2 032011 2 10(1/35) (n46) (n+8) (A.6b)
¢ = 1452-(7/2)z" = (7/2)[(1/35)(0+6) (r+8)-1]-n (A.6c)
z = z=z' = (1/35) (n+1) (n+6) (A.6d)
2tz 1-(8/315)[2(1+M) 2111 2 1_(1/315) (n46) (n#8) (+10) (4. 6e)
2?2 1-2/5) 1222 20D = 1-(1/5) (6 )ny0)/8 () (4.60)
2'?) = 1-w35) (2332017 = 12(1/35) (m46) (488, 0/, ()

(A.6g)
23 2 2@ 2@ 2 (1/35) (1) (63, )/, () (4.6n)
2"(2) 2 1-8/315)(2%") 20517 = 12(1/315) (n#6) (n+8) (n+10) -

. Ae(p)/Al(p) . (A.61)

The results (A.6a-1) hold also for "hard spheres," when n is
set equal to zero, and A,(«)/A;(=) 1is set equal to 2/3 (c.f.
(A.5a,b)); the dimensionless cross sections Ai(p) , Ay(p) are

tabulated by Chapman and Cowling35 for various values of p .
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APPENDIX B

CALCULATION OF THE PARTIAL PRESSURE
AND ENERGY COLLISION INTEGRALS

B.1 The Partial Pressure and Energy Collision Integrals as

Functions of the Diffusion Mach Number

Setting Q = mscsjcsk in (3.2), we have for the partial

pressure collision integral

= t oA > > .
[G(mlscsjcsk)]st m ffff(csjcsk csjcsk)FsFtlgbdbdedvdv1 . (B.1)

Expressing the random velocities in terms of the center-of-mass and

relative velocities, we have (cf. Egs. (3.5¢,d))

s fo) N -s (B.2a)
and
m
d -2 t =t B
cé =C- Er-g'— s (B.2b)
(o]
so that c¢'.c' -c ,c, = - EXE-(c -u_.)(g! - g.)
sj%sk Csj sk m - oj sy’ Bk T B —
mt ] mt 2 ot
- r—n; (c:ok-usk)(gj-gj )-(5;) (gjgk-gjgk) . (B.2¢)



‘.
- ! i - - - -
B

G R o

151

From Sec. 3.1 we have (cf. Egs. (3.8a,b))

& = By (B.2d)

and g& = g[sinx(axkcose + a_,sine)+ azkcosx] . (B.2e)

yk

Substituting (B.2d,e) into (B.2c) and performing the integration

over de we obtain

2m mt
s (cS.j K sj sk)de = 21 (1l-cosy )2 ﬁ;'[gj(cok Sk)] +

+ 21 (1~-cos x)—l—(mt) (g ij 3gjgk) . (B.2f)

Substitution of (B.2f) into expression (B.1l) gives us

[o(myeqoq0] - w1 1RGPy 18 (@) gy (e mug )1 +
S
+r;;; 5@ (g) (g% Jk—3gjgk)}dx7d$l , (B.3)

where we have used the definition of the general collision cross

section, S(Q)(g) 2r / (1-cos x)bdb .

Y
Recalling the velocity 30 (see (3.16)), we have

")
> > > -> -+
CoUg = ¢ * ao(ay + be) (B.4)
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where S; R t s @, 52, b aregiven, respectively, by (3.18a-c),

(3.26a,b). Then fram (2.34), (2.41), (3.12), (3.16), (3.17a,b),

(3.18a-c), (3.19) and (3.21), the expression (B.3) becomes

32
. =5 +F-9°]
u v a
_ 8%t ,.2,3. > > u .
[cS(rnschcs]}{)]St = 3 (ao/au)ff de dy e y

~128 a3y (8, e, (ay 406, ) 1+ 8 (m, /2m )5 (a_y) (526

Jk ~
-3y >‘};{1+3§29Li[8 -ba_(y _-¢ )1[¢. -ba_(y ¢ )] -
3k Dy g2 0P 0Vp fp Lg% Vg
S
ha Y, o
- = (- § 5 (B ,-ba, F-20)008 bay (v e )T +
pSaS aS

+P_tEL_1_
o 2

¥ Legpt(1-Dla, (y—e ) Je +(1-bla (v —e )] -

AP G-0ZIE +(1b)a (e )]} . (B.5)

1
m
[

|

U
mh“
Pamn N
[¢]

Y

The integration over dgo can be performed directly (see (A.4) for
the integrals involved); the result is given by (3.24). One-half
the trace of (3.24) then gives us the partial energy collision
integral, (3.23).

ct
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B.2 Small Diffusion Mach Number

terms up to second order in

Expanding the exponential in (3.24), multiplying out, retaining

gy (1 =1,2,3) , and performing the

straightforward integrations (see (A.2), (A.4), for the required

integrals), we have

[8(m,c )] = auN {es s +E[(1) riti(l (2))]+
sCs3%sk HigVg 18 ik ali-z)- ﬂ'mb -z

+—z(S) e.S.+ Lo s

+

st 0" 's’st J

12 -
Jk i®i" 10 Jk i 1[2a(z'— 7T z)

m
£ 2@ 0. Rk)( b- L3 ar 2L 5(2) by 4

m.o 5 20 2 My

m,

2 e [h_ (14322))zalre?k (1202, i Ht“ 2658 -

~(2) Mt (2) mt

O

AN k+E (za--E Z

3 )]+e e E. § k[(EZ-Z Yatz

1p7ipj

tos 3.0 t, *
2(ejepEK_p) (2za~zb=- = mo —2z(e:Jeprk) }, (B.6)

N

where the "z" integrals are listed in Appendix A.2 .

Substituting the expressions for Eij s Ri s &, b, Fij s S

(3.22b,c), (3.26a-d), respectively, we obtain the result (3.44);

€

i

The terms here are listed in order of increasing powers of
(1=1,2,3) .

i L]
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the partial energy collision integral is then given by one half
the trace of (3.44), expression (3.43).

B.3 Large Diffusion Mach Number

Upon making the transformtion

o3y
w
<y

t
™4

, & =qd , (e -finite) , (B.7)

and substituting the collision cross sections for inverse power

interparticle force laws (3.54), the expression (3.24) becomes

+ o ntl
_ n+l g__ 572, .
[6(mScSJCSk)]St - aOCét f [l+( €2 2)] {
««2[(Z,+e ){éz + TE e, )[1+Z.Z E, +7Z.R (1- )]+z
3] k m k i%7ip ‘14 1F 1%t

A,(p) m
2 4 172 € 2
+ Sk(l -—5- Z )— ';' ZiZkSi}] + 5 2 AT) m*— [ Jk(z +e +2Z 8) -

2 2\ * \

- 3 -

3(Zj+eJ)(Zk+e J1[1+2 1258423 Ry (1= £ 29913 (B.8)

Expanding the binomial in (B.8), multiplying through, retalning terms
#%

of zero and higher order in ¢ , and performing the integrations

(see (A.2), (A.U4), for the integrals involved), we obtain

For the case of hard spheres (n+ 0)see footnote on page 55.
Note that the factor ¢ ntl is excluded from this consideration.
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t 3/2aocét n+l{ [ij+(n;l)e e ]+
)

m, A0 ) g A (P) 3 A>(p)
A % 3 ) * 2 (m2Em tol- TI‘Z’))” *

LA n 3 A2(P)
PIEm m ket R (n+1) (0#6) J4Fy 48 [a- § 220 L(®) ks

(n+1) 3 A, (p)

[(ege i)t + (at 2 mo (- 3 2555 (g 5y Byg) "D +

(nt1) %1° M A>(p) n-1 A (p)
M '—eﬁp_Eip@[jkAT)(h 7o+ ea 2o (L 134“7“))]’ ‘

(B.9)

The underscored terms in (B.9) may be discarded without any

serious loss in accuracy. Then substituting for EiJ s & FiJ s

(3.22b), (3.26a,c), respectively, we obtain the expression (3.62),
from which the partial energy collision integral is obtained,

expression (3.61).
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APPENDIX C

CALCULATION OF THE PARTTAL HEAT FLOW COLLISION INTEGRAL

C.1 The Partial Heat Flow Collision Integral as a Function of

the Diffusion Mach Number

Setting Qs = %-mscgcsk in (3.2), we have for the partial

heat flow collision integral

=

1 2 = .S 2.y _.2 > >
[6(2 m.scscsk)]St =3 ffff(cé Caie cscsk)FsFtlgbdbdedvdv1 . (C.1)

Following a procedure exactly parallel to that of Appendix B we
express the random velocities Es and Eé in terms of the center-
of-mass and relative velocities 30 , &, and §' (see (B.2a,b)),

and obtain after considerable manipulation,

1201 _2e =0 e e oty (e
®s Csk™CsCsk e m (coi usi’(gi g1)(Cok usk) +

m m,
t > =+ 2. M2 2 e 2
+ ﬁg-[(co-us) +(5;> g ](gk-g&)+2(ﬁ;) (coi-usi)(gigi - gigk) .

(C.2)
Substituting the expressions for E and g' , (B.2d,e), into

(C.2) and integrating over de glves us
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é (c Cax~CsCsi)de = 2m(1-cosy) m 12gi(coi si)(c k) +

mt

—) g ]}+2n(l—cos x)(Ei» (coi si)<g ¢ -3gigk) o
Ty

+ gk[(EO-ES)
(C.3)

Then substituting (C.3) into (C.1) and making use of the definition

for the general collision cross section, we obtain

(83 mgee, W1 = R FSFtlg{S(l)(g)[2gi(coi-usi)(cok—usk) +

+ g (@b )%+ m/m ) %) Tty /m )8 (@) (o -u ) (6%, -

- 3gigk)}d3631 . (C.4)

Then from (2,34), (2.41), (3.12), (3.16), (3.17a,b), (3.18a-c),

(3.19), (3.21), and (B.4) we find m2

-[-—-+ F-°1

N N 3 a
(a /a YIS dc dy H y

[6(2 mscscsk)] = (n/2)

TT
“18™) (ay)l2y, (8 ;o (ay;#0e,)) (3, 4o (ay, b, ) +

+ ¥ (Ctag(@i402) %4 my/my)%a2y%) 15 (a y) L my/m o 32 +

+ ao(ayk+bek))-3(mt/mo)(301+ao(ayi+bsi))aoyiyk]} :




/
/d

i58

{1+ -—f?l 1 [c —ba (y -c )][c -ba (y_=e )J -
S a 9

i
Ny
Yol
L%’
—
=
1
U1

©
(Y
£=

v
(840, (7-9))° 108 -ba (v, -e )] +

[4)
«
mmmh—‘

+
«3E§“
ct
cfmt\)l =

[06p+(l-b)ab(yp-ep)][3Oq+(l-b)ao(yq-aq)] -

:t-g<‘50+<1—b><§-‘£))23[’c“op+(1-b>ao<yp-ep)1} . (C.5)

e
v
o

©
dﬁ)
ct

Ve

The d Integration can be directly performed (see (A.b4) for the

required Integrals); the result is the expression (3.25).

C.2 Small Diffusion Mach Number

Expanding the exponentials in (3.25), multiplying through,
retaining terms up to second order in €4 (1 =1,2,3), and
performing the integrations (see (A.2), (A.4), for the required

Integrals), we obtain (after considerable effort)

22
_ 3.3 (2) u
[5(2- mscscsk)] st = "4-8. LNSJS'C{3 k[a (1—32)+2 O a—z- +
O
+ —g-(l—z)]+ 5, (al11z-6+ L Le 2(13z'= 1§“ z)] +
m

[¢]

2t 212+ L@l
O

72 200 8 o8 [oatzr- L o) +

2 2
ﬁ$-<%- 224k 1R, G- 721522+ & (1892"-3502"+1712)] +
[¢]
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1% [5(7z 2 (62,1081 ~(2)
30 2 2'-52-2)+e“ (632"-98z ' +45z+422'\ /)] +
[e]
5 ai 7 m,
(o}

+ 762(172'<2)-9z"(2)-82(2)+uz'- %Q z)]} +

1u
15 kejRJ[a (27 zn_30z'+ —% z )+ _E. a (9z'~ 38 ot 29 '(2) _
2
11 "
- 2_ ( ) 9Z (2))+ 5 U (Z|_2z)+ _% ( (2)+92" ]_L;z + 35 Z)] +
52 ° Mo
2
+ —= L! _ 18 g_a_u_
O

+ % eJEJk[a.Z(2‘|'].9Z—2].Z' )+ :1—120 3(3-42—132(2)+14z' (2)) -

2 2
m

- 52 & + 5 (52-72+32(2)-1) ] +
[0 mO

lmt

Substituting for Eij s Ry 5 a, Fij s Sy s Gij s i,(3.22b,c),

(3.26a,c-f), respectively, we obtain after considerable manipulation
the expression (3.45).
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C.3 Large Diffusion Mach Number

We have from (3.25), upon making the transformation (B.7), for

inverse power interparticle force laws

a2 n+l > Z‘2 22 Z Zl
= 2 m € L4
l:‘5(2 n"scscsk):ls,C 2 Cst / dze [l+(a2 +€2)]

2

m m 2

-{2(Zve ) (aZ o+ ——-s p) @t o= e )+ (2 +ak>[z (a-+——0+
O O mo

osml o
m
+

m m2

t £ :
+ 2(5—0- at r-n-é-)Zpep]}°{l+Zi 3543
(e}

+2,R, (1~ 2 zz)} +

M 2.2, 4
+ 2(2 uSICAITSE D)[Z4Fy 48, (1- £ 2°)- £ 5,7,7 1 +

P m 5 51247
. My Mg
+ 2L(Z e ) (a2 ﬁ;-ek)+(zk+ek)(azp+ N o)1 I2,Fy +
a2 2
2 4 “u %
+8 (1- 2 2 7°)- slzlzp]+ = (Zy e, )+ > (Z;+e, )Gy, +
O O
5 aﬁ aﬁ , aﬁ 2
+§7%jﬂ%ﬁ” ?%W%ﬂ*;%@%ﬁn+
O 0] e}
2 2
+ 1y (o +72 e, 420, € )+ 23y, (Zyte )} +
5 5 0y (9240 472,427 4 )+ 3 2 Tty Bytey
a,
[®] O
a§ h®) Ey piy 1.2, 72, (/2
+ 5 St 7——5' S dZe [l+(2 2 :—2-)]

{(242)° E(azk+ = 50 (B2 2B, +2,R, (1- £2°%) +



N,

?

2 .2y i :
+ ZiFik+ Sk(l- §-Z )= 6-SiZiZk]—3(Zk+sk)(Zp+ep)[(aZp +

M 2 2. 2 2. 4
+ " ep)(1+ziszij+ziRi(1- £z ))+ziFip+sp(1- g2~ 2 5,221} .

(C.7)

Expanding the binomials in (C.7), multiplying through, retaining

%
terms of zero and higher order in «¢ » and performing the

integrations (see (A.2), (A.4), for the integrals involved), we

G H

obtain, after substituting Ei 15 * P10

,j’Ri’a’Fij’Si’

the expression (3.63).

*
Again, the factor €n+l 1s excluded from this consideration.
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